
Physics 505 Fall 2005

Homework Assignment #4 — Solutions

Textbook problems: Ch. 3: 3.4, 3.6, 3.9, 3.10

3.4 The surface of a hollow conducting sphere of inner radius a is divided into an even
number of equal segments by a set of planes; their common line of intersection is the
z axis and they are distributed uniformly in the angle φ. (The segments are like the
skin on wedges of an apple, or the earth’s surface between successive meridians of
longitude.) The segments are kept at fixed potentials ±V , alternately.

a) Set up a series representation for the potential inside the sphere for the general
case of 2n segments, and carry the calculation of the coefficients in the series far
enough to determine exactly which coefficients are different from zero. For the
nonvanishing terms, exhibit the coefficients as an integral over cos θ.

The general spherical harmonic expansion for the potential inside a sphere of
radius a is

Φ(r, θ, φ) =
∑
l,m

αlm

( r

a

)l

Ylm(θ, φ)

where

αlm =
∫

V (θ, φ)Y ∗
lm(θ, φ)dΩ

In this problem, V (θ, φ) = ±V is independent of θ, but depends on the azimuthal
angle φ. It can in fact be thought of as a square wave in φ

2 π
V

V−

ϕ

n =4

This has a familiar Fourier expansion

V (φ) =
4V

π

∞∑
k=0

1
2k + 1

sin[(2k + 1)nφ]

This is already enough to demonstrate that the m values in the spherical harmonic
expansion can only take on the values ±(2k+1)n. In terms of associated Legendre



polynomials, the expansion coefficients are

αlm =

√
2l + 1

4π

(l −m)!
(l + m)!

∫ 2±

0

V (φ)e−imφ dφ

∫ 1

−1

Pm
l (x) dx

=
4V

π

√
2l + 1

4π

(l −m)!
(l + m)!

∞∑
k=0

1
2k + 1

∫ 2π

0

sin[(2k + 1)nφ]e−imφ dφ

×
∫ 1

−1

Pm
l (x) dx

= −4iV

√
2l + 1

4π

(l −m)!
(l + m)!

∞∑
k=0

δm,(2k+1)n − δm,−(2k+1)n

2k + 1

∫ 1

−1

Pm
l (x) dx

Using P−m
l (x) = (−)m[(l−m)!/(l + m)!]Pm

l (x), we may write the non-vanishing
coefficients as

αl,−(2k+1)n = (−)n+1αl,(2k+1)n

= − 4iV

2k + 1

√
2l + 1

4π

(l − (2k + 1)n)!
(l + (2k + 1)n)!

∫ 1

−1

P
(2k+1)n
l (x) dx

(1)

for k = 0, 1, 2, . . .. Since l ≥ (2k + 1)n, we see that the first non-vanishing term
enters at order l = n. Making note of the parity of associated Legendre polyno-
mials, P − lm(−x) = (−)l+mPm

l (x), we see that the non-vanishing coefficients
are given by the sequence

αn,n, αn+2,n, αn+4,n, αn+6,n, . . .

α3n,3n, α3n+2,3n, α3n+4,3n, . . .

α5n,5n, α5n+2,5n, α5n+4,5n, . . .

...

b) For the special case of n = 1 (two hemispheres) determine explicitly the potential
up to an including all terms with l = 3. By a coordinate transformation verify
that this reduces to result (3.36) of Section 3.3.

For n = 1, explicit computation shows that∫ 1

−1

P 1
1 (x) dx = −π

2
,

∫ 1

−1

P 1
3 (x) dx = −3π

16
,

∫ 1

−1

P 3
3 (x) dx = −45π

8

Inserting this in to (1) yields

α1,−1 = α1,1 = iV

√
3π

2

α3,−1 = α3,1 = iV

√
21π

256
, α3,−3 = α3,3 = iV

√
35π

256



Hence

Φ = iV

[( r

a

) √
3π

2
(Y1,1 + Y1,−1)

+
( r

a

)3
(√

21π

256
(Y3,1 + Y3,−1) +

√
35π

256
(Y3,3 + Y3,−3)

)
+ · · ·

]
= −2V =

[( r

a

) √
3π

2
Y1,1 +

( r

a

)3
(√

21π

256
Y3,1 +

√
35π

256
Y3,3

)
+ · · ·

]
= 2V =

[( r

a

) 3
4

sin θ eiφ

+
( r

a

)3
(

21
128

sin θ(5 cos2 θ − 1)eiφ +
35
128

sin3 θ e3iφ

)
+ · · ·

]
= V

[( r

a

) 3
2

sin θ sinφ( r

a

)3 7
128

(
3 sin θ(5 cos2 θ − 1) sinφ + 5 sin3 θ sin3 φ

)
+ · · ·

]
(2)

To relate this to the previous result, we note that the way we have set up the
wedges corresponds to taking the ‘top’ of the +V hemisphere to point along the
ŷ axis. This may be rotated to the ẑ′ axis by a 90◦ rotation along the x̂ axis.
Explicitly, we take

ŷ = ẑ′, ẑ = −ŷ′, x̂ = x̂′

or

sin θ sinφ = cos θ′, cos θ = − sin θ′ sinφ′, sin θ cos φ = sin θ′ cos φ′

Noting that sin 3φ = − sin3 φ + 3 sinφ cos2 φ, the last line of (2) transforms into

Φ = V

[( r

a

) 3
2

cos θ′ +
( r

a

)3 7
128

(
3 cos θ′(5 sin2 θ′ sin2 φ′ − 1)

+ 5(− cos3 θ′ + 3 cos θ′ sin2 θ′ sin2 φ′)
)

+ · · ·
]

= V

[
3
2

( r

a

)
cos θ′ − 7

8

( r

a

)3
1
2 (5 cos3 θ′ − 3 cos θ′) + · · ·

]
= V

[
3
2

( r

a

)
P1(cos θ′)− 7

8

( r

a

)3

P3(cos θ′) + · · ·
]

which reproduces the result (3.36).



3.6 Two point charges q and −q are located on the z axis at z = +a and z = −a,
respectively.

a) Find the electrostatic potential as an expansion in spherical harmonics and powers
of r for both r > a and r < a.

The potential is clearly

Φ =
q

4πε0

(
1

|~x− ~a |
− 1
|~x + ~a |

)
where ~a = aẑ points from the origin to the positive charge. Using the spherical
harmonic expansion

1
|~x− ~x ′|

= 4π
∑
l,m

1
2l + 1

rl
<

rl+1
>

Y ∗
lm(x̂′)Ylm(x̂)

as well as ~a = aẑ, we obtain

Φ =
q

ε0

∑
l,m

1
2l + 1

rl
<

rl+1
>

[Y ∗
lm(0, φ′)− Y ∗

lm(π, φ′)]Ylm(θ, φ) (3)

Noting that Ylm(0, φ) ∼ Pm
l (1) and that Pm

l (1) = δm,0 we see that only terms
with m = 0 contribute. This is also obvious from symmetry. Since

Yl0(0, φ) = (−)lYl0(π, φ) =

√
2l + 1

4π

the potential (3) becomes

Φ =
q

4πε0

∞∑
l=0

[1− (−)l]
rl
<

rl+1
>

√
4π

2l + 1
Yl0(θ, φ)

=
q

2πε0

∑
l odd

rl
<

rl+1
>

Pl(cos θ)

(4)

b) Keeping the product qa = p/2 constant, take the limit of a → 0 and find the
potential for r 6= 0. This is by definition a dipole along the z axis and its
potential.

Since we will take a → 0, we have r< = a and r> = r. This yields an expansion
of (4)

Φ =
qa

2πε0r2

∞∑
k=0

(a

r

)2k

P2k+1(cos θ)



Setting qa = p/2 and taking a → 0, only the k = 0 term survives in the sum.
The result is

Φ =
p

4πε0

1
r2

P1(cos θ) =
p

4πε0

cos θ

r2
(5)

which is the potential due to a dipole.

c) Suppose now that the dipole of part b) is surrounded by a grounded spherical shell
of radius b concentric with the origin. By linear superposition find the potential
everywhere inside the shell.

To account for the spherical shell, we add to (5) a solution to the (homogeneous)
Laplace’s equation. For an inside solution, we have

Φ =
p

4πε0

[
1
r2

P1(cos θ) +
∞∑

l=0

Alr
lPl(cos θ)

]

The boundary condition Φ(r = b) = 0 corresponds to having

∞∑
l=0

Alb
l+2Pl(cos θ) = −P1(cos θ)

Since the Legendre polynomials form an orthonormal set, the only term that can
show up on the left hand side is the l = 1 term. We then take A1 = −1/bl+2, and
the resulting solution is

Φ =
p

4πε0

(
1
r2
− r

b3

)
cos θ

3.9 A hollow right circular cylinder of radius b has its axis coincident with the z axis and its
ends at z = 0 and z = L. The potential on the end faces is zero, while the potential
on the cylindrical surface is given as V (φ, z). Using the appropriate separation of
variables in cylindrical coordinates, find a series solution for the potential anywhere
inside the cylinder.

The general solution obtained by separation of variables has the form

Φ(ρ, φ, z) =
∑{

Jm(kρ) or Nm(kρ)
}{

e±imφ
}{

e±kz
}

However, since the potential vanishes on the endcaps, it is natural to take k → ik
so that the z function obeying boundary conditions is sin(nπz/L). The result is
to use the modified Bessel functions Im(kρ) and Km(kρ) instead. However, for
the solution to be regular at ρ = 0 we discard the Kν(kρ) functions, which blow
up at vanishing argument. The resulting series expression for the potential is

Φ(ρ, φ, z) =
∞∑

m=0

∞∑
n=1

Im

(nπ

L
ρ
) (

amn sinmφ + bmn cos mφ
)
sin

(nπ

L
z
)

(6)



In order to satisfy the boundary conditions on the cylindrical surface, we need to
have

V (φ, z) =
∑
m,n

Im

(
nπb

L

) (
amn sinmφ + bmn cos mφ

)
sin

(nπ

L
z
)

This is a double Fourier series in φ and z. As a result, the Fourier coefficients are{
amn

bmn

}
Im

(
nπb

L

)
=

1
π

∫ 2π

0

dφ
2
L

∫ L

0

dz V (φ, z)
{

sinmφ
cos mφ

}
sin

(nπ

L
z
)

with the caveat that b0,n must be divided by two. This can be rewritten as{
amn

bmn

}
=

2
πLIm(nπb/L)

∫ 2π

0

dφ

∫ L

0

dz V (φ, z)
{

sinmφ
cos mφ

}
sin

(nπ

L
z
)

(7)

(where b0,n has to be divided by two).

3.10 For the cylinder in Problem 3.9 the cylindrical surface is made of two equal half-
cylinders, one at potential V and the other at potential −V , so that

V (φ, z) =
{

V for −π/2 < φ < π/2
−V for π/2 < φ < 3π/2

a) Find the potential inside the cylinder.

To obtain the potential, we want to find the coefficients amn and bmn of the
expansion (6) and (7). Noting first that V (φ, z) = V (φ) = ±V is an even function
of φ, we see that all the amn coefficients vanish. We are left with

bmn =
2V

πLIm(nπb/L)

[∫ π/2

−π/2

−
∫ 3π/2

π/2

]
dφ cos mφ

∫ L

0

dz sin
nπz

L

=
2V

π2Im(nπb/L)
4 sin(mπ/2)

m

1− (−)n

n
(m 6= 0)

This is non-vanishing only when both m and n are odd. Introducing m = 2k + 1
and n = 2l + 1, we have

b2k+1,2l+1 =
16V

π2I2k+1((2l + 1)πb/L)
(−)k

(2k + 1)(2l + 1)

Inserting this into (6) yields

Φ =
16V

π2

∞∑
k=0

∞∑
l=0

(−)k

(2k + 1)(2l + 1)
I2k+1(

(2l+1)πρ
L )

I2k+1(
(2l+1)πb

L )
cos(2k+1)φ sin

(2l + 1)πz

L
(8)



b) Assuming L � b, consider the potential at z = L/2 as a function of ρ and φ and
compare it with two-dimensional Problem 2.13.

For L � b both ρ/L and b/L are much less than one. This allows us to use a
small argument expansion of the modified Bessel function

Iν(x) ≈ 1
Γ(ν + 1)

(x

2

)ν

In addition, for z = L/2 we have

sin
(2l + 1)πz

L
= sin(l + 1

2 )π = (−)l

Hence in this limit (8) becomes

Φ =
16V

π2

∑
k,l

(−)k

2k + 1
(−)l

2l + 1

(ρ

b

)2k+1

cos(2k + 1)φ

=
16V

π2

[∑
l

(−)l

2l + 1

]
<

[∑
k

(−)k

2k + 1

(ρ

b
eiφ

)2k+1
]

Noting the Taylor series expansion for arctan

tan−1 z =
∑

n

(−)n

2n + 1
z2n+1

we arrive at

Φ =
16V

π2
tan−1(1)< tan−1

(ρ

b
eiφ

)
=

4V

π
< tan−1

(ρ

b
eiφ

)
To calculate < tan−1 z we recall that

tan−1 a + tan−1 b = tan−1 a + b

1− ab

Hence
< tan−1 z = 1

2 (tan−1 z + tan−1 z∗) = 1
2 tan−1 z + z∗

1− |z|2

For z = (ρ/b)eiφ we find

Φ =
2V

π
tan−1 2(ρ/b) cos φ

1− (ρ/b)2
=

2V

π
tan−1 2bρ cos φ

b2 − ρ2

which reproduces the answer to Problem 2.13 (where V1 = −V2 = V ).


