
Physics 505 Fall 2005

Practice Midterm — Solutions

The midterm will be a 120 minute open book, open notes exam. Do all three problems.

1. A two-dimensional problem is defined by a semi-circular wedge with 0 ≤ φ ≤ β and
a ≤ ρ ≤ b.

ba
β

a) For the Dirichlet problem, it is possible to expand the Green’s function as

G(ρ, φ; ρ′, φ′) =
∞∑

m=1

gm(ρ, ρ′) sin
(

mπφ

β

)
sin

(
mπφ′

β

)

Write down the appropriate differential equation that gm(ρ, ρ′) must satisfy.

Note that the expansion in terms of sin(mπφ/β) is designed to satisfy Dirich-
let boundary counditions on the straight segments of the wedge. The Green’s
function equation we wish to solve is

∇2
x′G(ρ, φ; ρ′, φ′) = −4πδ2(~x− ~x ′) = −4π

ρ
δ(ρ− ρ′)δ(φ− φ′)

By completeness, we have

∞∑
m=1

sin
(

mπφ

β

)
sin

(
mπφ′

β

)
=

β

2
δ(φ− φ′)

Hence

∇2
x′G(ρ, φ; ρ′, φ′) = −8π

βρ
δ(ρ− ρ′)

∞∑
m=1

sin
(

mπφ

β

)
sin

(
mπφ′

β

)
(1)

Using the polar coordinate expression for the Laplacian, we find

∇2
x′G(ρ, φ; ρ′, φ′) =

∞∑
m=1

[
1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
− 1

ρ′2

(
mπ

β

)2
]

gm(ρ, ρ′)

× sin
(

mπφ

β

)
sin

(
mπφ′

β

)



Comparing this with (1) yields the ODE[
1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
− 1

ρ′2

(
mπ

β

)2
]

gm(ρ, ρ′) = −8π

βρ
δ(ρ− ρ′)

which may be converted into Sturm-Liouville form by multiplying by ρ′[
∂

∂ρ′
ρ′

∂

∂ρ′
− 1

ρ′

(
mπ

β

)2
]

gm(ρ, ρ′) = −8π

β
δ(ρ− ρ′)

b) Solve the Green’s function equation for gm(ρ, ρ′) subject to Dirichlet boundary
conditions and write down the result for G(ρ, φ; ρ′, φ′).

The Dirichlet boundary conditions are that gm(ρ, ρ′) vanish when ρ′ = a or b,
namely gm(ρ, a) = gm(ρ, b) = 0. For these homogeneous boundary conditions,
the Green’s function takes the form

gm(ρ, ρ′) = − 8π

βA
u(ρ<)v(ρ>)

where u(ρ′) and v(ρ′) are solutions to the homogeneous equation satisfying bound-
ary conditions u(a) = v(b) = 0, and A is related to the Wronskian by W (u, v) =
−A/ρ′. Noting that the solution to the homogeneous radial equation has the
form

gm(ρ, ρ′) ∼ ρ±mπ/β

it is easy to write down the appropriate u(ρ′) and v(ρ′)

u = ρ′
mπ
β

(
1−

( a

ρ′

) 2mπ
β

)
v = ρ′

mπ
β

(
1−

( b

ρ′

) 2mπ
β

)
Computing the Wronskian yields

W = uv′ − vu′ =
mπ

βρ′
ρ′

2m
β

(
1−

( a

ρ′

) 2mπ
β

) (
1 +

( b

ρ′

) 2mπ
β

)
− mπ

βρ′
ρ′

2m
β

(
1−

( b

ρ′

) 2mπ
β

) (
1 +

( a

ρ′

) 2mπ
β

)
=

1
ρ′

(
2mπ

β

) (
b

2mπ
β − a

2mπ
β

)
As a result

gm(ρ, ρ′) = − 4
m

(ρ<ρ>)
mπ
β

b
2mπ

β − a
2mπ

β

(
1−

( a

ρ<

) 2mπ
β

) (
1−

( b

ρ>

) 2mπ
β

)

=
4
m

(
ρ<

ρ>

)mπ
β

(
1−

(
a

ρ<

) 2mπ
β

) (
1−

(ρ>

b

) 2mπ
β

)
1−

(
a
b

) 2mπ
β



Combining this with the angular functions yields the final result

G(ρ, φ; ρ′, φ′) =
∞∑

m=1

4
m

(
ρ<

ρ>

)mπ
β

(
1−

(
a

ρ<

) 2mπ
β

) (
1−

(ρ>

b

) 2mπ
β

)
1−

(
a
b

) 2mπ
β

× sin
(

mπφ

β

)
sin

(
mπφ′

β

)
Note that this has the expected behavior as either a→ 0 or b→∞.

2. A conducting spherical shell of inner radius a is held at zero potential. The interior
of the shell is filled with electric charge of a volume density

ρ(~r ) = ρ0

(a

r

)2

sin2 θ

a) Find the potential everywhere inside the shell. To obtain the potential, we make
use of the Green’s function for the interior of a conducting sphere

G(~x, ~x ′) = 4π
∑
l,m

1
2l + 1

rl
<

rl+1
>

(
1−

(r>

a

)2l+1
)

Y ∗
lm(Ω′)Ylm(Ω)

Actually, because of azimuthal symmetry, we only need the m = 0 components
of the Green’s function expansion

G(~x, ~x ′) =
∑

l

rl
<

rl+1
>

(
1−

(r>

a

)2l+1
)

Pl(cos θ′)Pl(cos θ) + (m 6= 0)

Although the charge density is specified in terms of sin2 θ, this can be converted
into Legendre polynomials. Since sin2 θ = 1 − cos2 θ, and since Pl(cos θ) is of
degree (cos θ)l, we see that sin2 θ has to be a linear combination of P0 and P2. It
is not too hard to see that

sin2 θ = 2
3 [P0(cos θ)− P2(cos θ)]

We now note that since the surface is held at zero potential the solution in the
interior is given by

Φ(~x ) =
1

4πε0

∫
ρ(~x ′)G(~x, ~x ′) d3x′

=
ρ0a

2

4πε0

∑
l

Pl(cos θ)
∫

2
3 [P0(cos θ′)− P2(cos θ′)]

× Pl(cos θ′)
rl
<

rl+1
>

(
1−

(r>

a

)2l+1
)

dr′ dφ′ d(cos θ′)



By orthogonality of Legendre polynomials, this becomes

Φ(~x ) =
2ρ0a

2

3ε0

[
P0(cos θ)

∫ a

0

1
r>

(
1−

(r>

a

))
dr′

− 1
5
P2(cos θ)

∫ a

0

r2
<

r3
>

(
1−

(r>

a

)5
)

dr′
]

=
2ρ0a

2

3ε0

[
P0(cos θ)

∫ a

0

(
1
r>
− 1

a

)
dr′

− 1
5
P2(cos θ)

∫ a

0

r2
<

(
1
r3
>

−
r2
>

a5

)
dr′

]
=

2ρ0a
2

3ε0

[
P0(cos θ)

((
1
r
− 1

a

) ∫ r

0

dr′ +
∫ a

r

(
1
r′
− 1

a

)
dr′

)
− 1

5
P2(cos θ)

((
1
r3
− r2

a5

) ∫ r

0

r′2 dr′ + r2

∫ a

r

(
1
r′3
− r′2

a5

)
dr′

)]
=

2ρ0a
2

3ε0

[
P0(cos θ) ln

a

r
− 1

6
P2(cos θ)

(
1−

( r

a

)2
)]

Inserting the expressions for Legendre polynomials, this becomes

Φ(~x ′) =
2ρ0a

2

3ε0

[
ln

a

r
− 1

12

(
1−

( r

a

)2
)

(3 cos2 θ − 1)
]

b) What is the surface charge density on the inside surface of the shell?

The surface charge density is given by

σ = ε0
∂Φ
∂r

∣∣∣∣
r=a

=
2ρ0a

2

3

[
−1

r
+

1
6

r

a2
(3 cos2 θ − 1)

]
r=a

= −2ρ0a

3
(
1− 1

6 (3 cos2 θ − 1)
)

Note that only the l = 0 term contributes to the total charge induced on the
shell. This is simply

Qshell = −2ρ0a

3
(4πa2) = −8πρ0a

3

3

This is the negative of the charge contained in the interior

Qinside =
∫

ρ(~x ) d3x = 2πρ0a
3

∫
sin2 θ d(cos θ) =

8πρ0a
3

3

3. A thin disk of radius a lies in the x-y plane with its center at the coordinate origin.
The disk is uniformly charged with a surface density σ.



a) Calculate the multipole moments of the charge distribution. Make sure to indicate
which moments are non-vanishing.

The volume charge density for the disk can be written as

ρ(~x ) =
σ

r
δ(cos θ)

(provided r < a). Note that the factor of 1/r ensures uniform surface charge
density since

dρ = ρ(~x ) d3x =
σ

r
δ(cos θ)r2 dr dφ d(cos θ) = σr dr dφ

∣∣
θ=π/2

and r dr dφ is the standard area element in polar coordinates. The multipole
moments are then given by

qlm =
∫

rlY ∗
lm(Ω)r(~x ) d3x = σ

∫
rl+1Ylm(θ, φ)δ(cos θ) dr dφ d(cos θ)

By azimuthal symmetry, only the m = 0 moments are non-vanishing. Integrating
the φ and θ angles gives

ql,0 = 2πσYl,0(
π

2
, 0)

∫ a

0

rl+1 dr = 2πσ

√
2l + 1

4π
Pl(0)

al+2

l + 2

(Note that Yl,0 is independent of φ.) Since the Legendre polynomials are even
and odd depending on l, we see that only even l moments are non-vanishing

q2k,0 =

√
(4k + 1)πPl(0)

2k + 2
σa2k+2 =

(−)k
√

4k + 1Γ(k + 1
2 )

2(k + 1)!
σa2k+2

Since the disk is uniformly charged, the total charge is simply q = σ(πa2). This
allows us to write

q2k,0 =
(−)k

√
4k + 1Γ(k + 1

2 )
2π(k + 1)!

qa2k

The first two non-vanishing moments are

q00 =

√
1
4π

q q20 = −1
4

√
5
4π

qa2

b) Write down the multipole expansion for the potential in explicit form up to the
first two non-vanishing terms.

The multipole expansion yields

Φ(~x ) =
1

4πε0
4π

[
q00

Y00(Ω)
r

+
1
5
q20

Y20(Ω)
r3

+ · · ·
]

=
q

4πε0
4π

[√
1
4π

1
r

√
1
4π
− 1

20

√
5
4π

a2

r3

√
5
4π

P2(cos θ) + · · ·

]

=
q

4πε0

[
1
r
− 1

4
a2

r3
P2(cos θ) + · · ·

]
=

q

4πε0

[
1
r
− 1

8
a2

r3
(3 cos2 θ − 1) + · · ·

]


