
Physics 505 Fall 2005

Homework Assignment #9 — Solutions

Textbook problems: Ch. 5: 5.20, 5.22, 5.26
Ch. 6: 6.1

5.20 a) Starting from the force equation (5.12) and the fact that a magnetization ~M
inside a volume V bounded by a surface S is equivalent to a volume current
density ~Jm = (~∇× ~M) and a surface current density ( ~M × ~n ), show tha in the
absence of macroscopic conduction currents the total magnetic force on the body
can be written

~F = −
∫

V

(~∇ · ~M) ~Be d
3x+

∫
S

( ~M · ~n ) ~Be da

where ~Be is the applied magnetic induction (not including that of the body in
question). The force is now expressed in terms of the effective charge densities ρM

and σM . If the distribution of magnetization is now discontinuous, the surface
can be at infinity and the force given by just the volume integral.

Given volume and surface current densities, we may write the force as

~F =
∫

V

~J × ~B d3x+
∫

S

~K × ~B da

Using ~Jm = ~∇×M and ~Km = ~M × n̂, we have

~F =
∫

V

(~∇× ~M)× ~Be d
3x+

∫
S

( ~M × n̂)× ~Be da

= −
∫

V

~Be × (~∇× ~M) d3x+
∫

S

( ~M × n̂)× ~Be da

All that remains now is an exercise in vector calculus. We begin with the identity

~∇(~a ·~b) = (~a · ~∇)~b+ (~b · ~∇)~a+ ~a× (~∇×~b) +~b× (~∇× ~a)

with ~a = ~M and ~b = ~Be as well as the BAC–CAB rule on the surface term to
write

~F =
∫

V

[−~∇( ~M · ~Be) + ( ~M · ~∇) ~Be + ( ~Be · ~∇) ~M + ~M × (~∇× ~Be)] d3x

+
∫

S

[( ~Be · ~M)n̂− ( ~Be · n̂) ~M ] da

=
∫

V

[( ~M · ~∇) ~Be + ( ~Be · ~∇) ~M ] d3x−
∫

S

( ~Be · n̂) ~M da

(1)



To obtain the second line, we made use of the fact that we are in a source free
region for the applied ~Be (so that ~∇× ~Be = 0) and we also integrated the total
divergence to cancel one of the surface terms. To proceed, we note that the
volume terms may be integrated by parts. In particular∫

V

(~a · ~∇)bi d3x =
∫

V

[∇ · (~abi)− (~∇ ·~a)bi] d3x = −
∫

V

(~∇ ·~a)bi d3x+
∫

S

(n̂ ·~a)bi da

or in a full vector notation∫
V

(~a · ~∇)~b d3x = −
∫

V

(~∇ · ~a)~b d3x+
∫

S

(n̂ · ~a)~b da

Using this partial integration on (1) results in

~F = −
∫

V

[(~∇ · ~M) ~Be + (~∇ · ~Be) ~M ] d3x+
∫

S

(n̂ · ~M) ~Be da

= −
∫

V

(~∇ · ~M) ~Be d
3x+

∫
S

(n̂ · ~M) ~Be da

(2)

where we also used ~∇ · ~Be = 0.

b) A sphere of radius R with uniform magnetization has its center at the origin of
coordinates and its direction of magnetization making spherical angles θ0, φ0. If
the external magnetic field is the same as in Problem 5.11, use the expression of
part a) to evaluate the components of the force acting on the sphere.

Since the magnetization is uniform (ie constant), the volume gradient term van-
ishes, and we are left with a surface integral. Explicitly, the magnetization vector
may be written

~M = M0(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)

while the magnetic induction vector is

~Be = B0(1 + βy, 1 + βx, 0) = B0(1 + βr sin θ sinφ, 1 + βr sin θ cosφ, 0)

We have used spherical coordinates where the normal vector is

n̂ = (sin θ cosφ, sin θ sinφ, cos θ)

Then

~F =
∫

S

( ~M · n̂) ~Be da = R2M0B0

∫
dΩ [cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0)]

× (1 + βR sin θ sinφ, 1 + βR sin θ cosφ, 0)



It is straightforward to perform the φ integral. The result is

~F = 2πR2M0B0

∫ 1

−1

d cos θ (cos θ cos θ0 + 1
2βR sin2 θ sin θ0 sinφ0,

cos θ cos θ0 + 1
2βR sin2 θ sin θ0 cosφ0, 0)

= 2π
3 M0B0R

3β(sin θ0 sinφ0, sin θ0 cosφ0, 0)

Note that the uniform (β independent) component of the magnetic field does not
contribute to the force, as expected.

5.22 Show that in general a long, straight bar of uniform cross-sectional area A with uni-
form lenghwise magnetization M , when placed with its flat end against an infinitely
permeable flat surface, adheres with a force given approximately by

F ' µ0

2
AM2

Relate your discussion to the electrostatic considerations in Section 1.11.

This problem is best solved by considering an image magnet. The infinite perme-
ability of the flat surface ensures that the magnetic field must be perpendicular
to the surface. As a result, this is similar to the electrostatic case of electric field
lines being perpendicular to the surface of a perfect conductor. For magnetostat-
ics, this means that we may use a magnetic scalar potential ΦM (since there are
no free currents) subject to the condition ΦM = 0 at z = 0 (taking the surface to
lie in the x-y plane at z = 0). The image problem is then set up as follows

image z

M M

A

Fortunately we may make use of some of our previous results. For the magnetic
induction of the image magnet, we may take the result of Homework #8, Problem
5.19

Bz(z) = −µ0M

2

[
z√

a2 + z2
− z + L√

a2 + (z + L)2

]
Where we have shifted to coordinates so that the image magnet lies between
z = −L and z = 0. Note that, strictly speaking, this is the magnetic induction
on the axis of the magnet. However, for a long straight bar, we may approximate
the magnetic induction to be roughly uniform across the face of the magnet. Since
we assume the magnetization to be uniform, we may compute the force from the



surface term of (2)

~F =
∫

S

(n̂ · ~M) ~Be da = ẑM

∫
[−Bz(0) +Bz(L)] da

≈ ẑMA[Bz(L)−Bz(0)] = ẑ
µ0M

2A

2

[
2L√

a2 + 4L2
− L√

a2 + L2
− L√

a2 + L2

]
≈ −ẑ µ0M

2A

2

where in the last line we used L � a (a condition that we needed anyway to
ensure that Bz is nearly uniform on the endcaps).

5.26 A two-wire transmission line consists of a pair of nonpermeable parallel wires of radii
a and b separated by a distance d > a + b. A current flows down one wire and back
the other. It is uniformly distributed over the cross section of each wire. Show that
the self-inductance per unit length is

L =
µ0

4π

[
1 + 2 ln

(
d2

ab

)]

This problem appears straightforward, but can be quite tedious if not approached
with care. Considering both wires as a single circuit, we could take the definition

L =
µ0

4πI2

∫ ~J(~x ) · ~J(~x ′)
|~x− ~x ′|

d3x d3x′ (3)

where both ~x and ~x ′ are individually taken over wires a and b. However, working
out this integral requires care both because of the geometry and because the
total inductance is actually infinite (it is only the inductance per unit length that
is finite). [For uniform anti-parallel current densities, the numerator is almost
trivial, but the denominator causes difficulty.]

Instead, using

~A(~x) =
µ0

4π

∫ ~J(~x ′)
|~x− ~x ′|

d3x′ (4)

we may rewrite the inductance expression as

L =
1
I2

∫
~J(~x ) · ~A(~x ) d3x (5)

which is exactly the same as we would have gotten from energy considerations
W = 1

2LI
2 and W = 1

2

∫
~J · ~Ad3x. To proceed, we need to find an expression for

the vector potential ~A. Of course, we would like to avoid using the integral (4).
as that would be just as bad as using (3). What we can do instead is to consider



each wire one at a time (because of linear superposition). Then for a single wire
(say the one of radius a), Ampère’s law gives the simple result

~B =
µ0I

2πa
ρ<

ρ>
φ̂ (6)

Based on (4), and the fact that the current density ~J is only along the ẑ direction,
we seek a vector potential Az that gives rise to this magnetic induction. From
the cross product ~B = ~∇× ~A we see that

Bφ(ρ) = − ∂

∂ρ
Az(ρ) ⇒ Az = −

∫
Bφ(ρ) dρ

Integrating the magnetic induction, we obtain

~A = −µ0I

4π
ẑ

{
(ρ/a)2, ρ < a
1 + ln[(ρ/a)2], ρ > a

where the constants were chosen to make ~A continuous at the surface of the wire.
[It may appear that an overall constant shift of ~A would modify the inductance
according to (5). However, once we assume the vector current density ~J integrates
to zero over the entire volume of the inductor, as must happen for a closed
circuit, then this constant drops out.] Note, in addition, that this choice of vector
potential trivially satisfies the Coulomb gauge condition ~∇ · ~A = 0. Combining
both wires (with currents in opposite directions), we arrive at

~A = −µ0I

4π
ẑ

[{
(ρ/a)2, ρ < a
1 + ln[(ρ/a)2], ρ > a

}
−
{

(ρ′/b)2, ρ′ < b
1 + ln[(ρ′/b)2], ρ′ > b

}]
where ρ and ρ′ are the perpendicular distances to the centers of wires a and
b, respectively. Returning to (5), we see that the inductance integral will have
two contributions, one from the current flowing in wire a and the other from
the current in wire b. We may break this up into two terms, and only calculate
the wire a contribution. The wire b contribution may then be obtained by the
interchange a↔ b. In wire a, the current density is ~Ja = (I/πa2)ẑ. Furthermore,
since the wires are separated, we have

~Aa = −µ0I

4π
ẑ
(
(ρ/a)2 − 1− ln[(ρ′/b)2]

)
Thus

La =
µ0

4π2a2

∫
ρ<a

(
1− (ρ/a)2 + ln[(ρ′/b)2]

)
ρdρ dφ

The first two terms in the integrand are trivial to integrate. However, the log
term takes some care, as it is based on the distance to the second center, ρ′ (which



may be obtained from the law of cosines, ρ′2 = ρ2 + d2 − 2ρd cosφ). Integrating
the first two terms gives

La =
µ0

4π2a2

(
π

2
a2 +

∫ a

0

ρdρ

∫ 2π

0

ln[(ρ′/b)2] dφ
)

To proceed, we note that the vector potential is harmonic in a source-free region,
∇2 ~A = 0. In particular, since this problem is independent of z, this implies that
~A due to wire b is harmonic in two dimensions inside of wire a (where the integral
is performed). We then recall that the average of any harmonic function around
a circle is equal to the function at the center of the circle. Hence∫ 2π

0

ln[(ρ′/b)2] dφ = 2π ln[(d/b)2]

since ρ′ = d at the center of wire a. [Equivalently, we see that ln(ρ′/b)2 is the
real part of an analytic function ln[(z/b−1)2], which explicitly demonstrates that
it is harmonic. Showing that the average value of an analytic function around a
circle is equal to the value at the center is then a simple application of Cauchy’s
integral formula.] In any case, this allows us to integrate the log term exactly.
The result is simply

La =
µ0

4π2a2

(π
2
a2 + πa2 ln[(d/b)2]

)
=
µ0

4π

(
1
2

+ ln
d2

b2

)
Combining La and a similar expression for Lb finally gives

L =
µ0

4π

(
1 + ln

d4

a2b2

)
(7)

which we stress is an exact result.

Incidentally, a more direct use of energetics would yield an inductance expression
of the form

L =
1

µ0I2

∫
| ~B(~x )|2 d3x

However, any attempt to integrate the magnetic energy in this fashion turns out
to be extremely tedious. This is because the integral is over two centers (ie with
distances ρ and ρ′), and hence one must give up cylindrical symmetry. Of course,
the magnetic induction is straightforwardly given by applying (6) to both wires

~B =
µ0I

2π

(
ρ<

aρ>
φ̂−

ρ′<
bρ′>

φ̂′
)

so that

| ~B |2 =
(
µ0I

2π

)(
1
a2

(
ρ<

ρ>

)2

+
1
b2

(
ρ′<
ρ′>

)2

− 1
ab

ρ<ρ
′
<

ρ>ρ′>

ρ2 + ρ′2 − d2

ρρ′

)



where we have used some geometry to evaluate

φ̂ · φ̂′ =
ρ2 + ρ′2 − d2

2ρρ′

The volume (actually area, since we work per unit length in the z direction)
integral can be performed by a suitable change of variables∫

d2x = 2
∫
J dρ dρ′

where the Jacobian is

J =
∣∣∣∣ ∂(x, y)
∂(ρ, ρ′)

∣∣∣∣ = 2ρρ′√
∆

The factor of two in the integral is a result of the two-fold degeneracy of specifying
a point (x, y) based on (ρ, ρ′). The quantity

∆ = −d4 − ρ4 − ρ′4 + 2(d2ρ2 + d2ρ′2 + ρ2ρ′2)

is actually non-negative in the integration region

ρ+ ρ′ > d, |ρ− ρ′| < d

(obtained by satisfying the triangle inequality). The expression for the inductance
then has the form

L =
µ0

2π2

∫
J dρ dρ′

(
1
a2

(
ρ<

ρ>

)2

+
1
b2

(
ρ′<
ρ′>

)2

− 1
ab

ρ<ρ
′
<

ρ>ρ′>

ρ2 + ρ′2 − d2

ρρ′

)

This integration can be broken up into three regions, ρ < a (inside the first
wire), ρ′ < b (inside the second wire) and {ρ > a, ρ′ > b} (outside both wires).
Specifically, these three integrals are

I1 =
µ0

π2

∫ a

0

ρdρ

∫ d+ρ

d−ρ

ρ′dρ′
1√
∆

(
ρ2 − a2

a4
+
d2 + a2 − ρ2

a2ρ′2

)
I2 =

µ0

π2

∫
dρ

ρ

∫
dρ′

ρ′
d2

√
∆

I3 =
µ0

π2

∫ b

0

ρ′dρ′
∫ d+ρ′

d−ρ′
ρdρ

1√
∆

(
ρ′2 − b2

b4
+
d2 + b2 − ρ′2

b2ρ2

)
(where the integration region is left implicit in I2). The integrals I1 and I3 are
straightforward, and may be evaluated by first using∫

1√
(a− x)(b+ x)

dx = tan−1

(
(b+ x)− (a− x)
2
√

(a− x)(b+ x)

)



The result is

I1 =
µ0

4π

(
1
2

+ ln
d2

d2 − a2

)
I3 =

µ0

4π

(
1
2

+ ln
d2

d2 − b2

)
The I2 integral is somewhat more involved, as the integration region is somewhat
awkward to specify. One way to handle it is to start with the complete region
(which must be regulated by taking, eg, an ε cutoff, ρ > ε and ρ′ > ε) and then
subtracting away the ε < ρ < a and ε < ρ′ < b contributions. The result is

I2 =
µ0

4π

(
ln
d4

ε4
− ln

d2a2

ε2(d2 − a2)
− ln

d2b2

ε2(d2 − b2)

)
=
µ0

4π
ln

(d2 − a2)(d2 − b2)
a2b2

Adding all three contributions together gives

L = I1 + I2 + I3 =
µ0

4π

(
1 + ln

d4

a2b2

)
which is the same result as (7).

6.1 In three dimensions the solution to the wave equation (6.32) for a point source in
space and time (a light flash at t′ = 0, ~x ′ = 0) is a spherical shell disturbance of radius
R = ct, namely the Green function G(+) (6.44). It may be initially surprising that in
one or two dimensions, the disturbance possesses a “wake”, even though the source
is a “point” in space and time. The solutions for fewer dimensions than three can be
found by superposition in the superfluous dimension(s), to eliminate dependence on
such variable(s). For example, a flashing line source of uniform amplitude is equivalent
to a point source in two dimensions.

a) Starting with the retarded solution to the three-dimensional wave equation (6.47),
show that the source f(~x ′, t) = δ(x′)δ(y′)δ(t′), equivalent to a t = 0 point source
at the origin in two spatial dimensions, produces a two-dimensional wave

Ψ(x, y, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

where ρ2 + x2 + y2 and Θ(ξ) is the unit step function [Θ(ξ) = 0 (1) if ξ < (>) 0.]

Using

Ψ(~x, t) =
∫

[f(~x ′, t′)]ret
|~x− ~x ′|

d3x′

we find

Ψ(~x, t) =
∫
δ(x′)δ(y′)δ(t−R/c)

R
dx′dy′dz′

=
∫ ∞

−∞

δ(t−R/c)
R

dz′



where
R = |~x− ~x ′| =

√
ρ2 + (z − z′)2 when x′ = y′ = 0

By shifting z′ → z′ + z, we end up with the integral

Ψ(ρ, t) =
∫ ∞

−∞

δ(t−
√
ρ2 + z′2/c)√
ρ2 + z′2

dz′ (8)

Using

δ(f(ζ)) =
∑

i

1
|f ′(ζ)|

δ(ζ − ζi) (9)

where the sum is over the zeros of f(ζ), we see that

δ(t−
√
ρ2 + z′2/c) =

∑
i

c
√
ρ2 + z′2

|z′|
δ(z′ − z′i)

The zeros z′i are given by

ρ2 + z′2 = c2t2 ⇒ z′ = ±
√
c2t2 − ρ2

However it is clear that there are real zeros only if c2t2 ≥ ρ2 or ρ < ct. Going
back to (8), and noting there are two zeros (one for each sign of the square root),
we end up with

Ψ(ρ, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

b) Show that a “sheet” source, equivalent to a point pulsed source at the origin in
one space dimension, produces a one-dimensional wave proportional to

ψ(x, t) = 2πcΘ(ct− |x|)

For the sheet source, we use f(~x ′, t′) = δ(x′)δ(t′) to write

Ψ(~x, t) =
∫
δ(x′)δ(t−R/c)

R
dx′dy′dz′

where R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. By integrating x′ and shifting
y′ → y′ + y and z′ → z′ + z we end up with

Ψ(x, t) =
∫
δ(t−

√
x2 + y′2 + z′2/c)√
x2 + y′2 + z′2

dy′dz′ =
∫
δ(t−

√
ρ′2 + x2/c)√
ρ′2 + x2

ρ′dρ′dφ′

where we have gone to polar coordinates in the y′-z′ plane. The φ′ integral is
now trivial. Treating the delta function as in (9) results in

Ψ(x, t) = 2π
∫ ∞

0

∑
i

cδ(ρ′ − ρ′i)dρ
′



where the zeros ρ′i corespond to

ρ′2 + x2 = c2t2 ⇒ ρ′ = ±
√
c2t2 − x2

Since ρ′ is non-negative, only the positive zero contributes, and we end up with

Ψ(x, t) = 2πcΘ(ct− |z|)

where the step function enforces the condition for a real zero to exist.


