
Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 6

Maximal score: 25 Points

1. Jackson, Problem 4.1 6 Points

a): The charge distribution is

ρ(x) =
q

r2
δ(r − a)δ(cos θ)

[
δ(φ) + δ(φ +

π

2
)− δ(φ− π)− δ(φ +

3π

2
)
]

and thus

qlm =
∫

ρ(x)rlY ∗
lm(θ, φ)d3x =

√
2l + 1

4π

(l −m)!
(l + m)!

q al Pm
l (0)

{
1 + exp(−im

π

2
)− exp(−imπ)− exp(−im

3π

2
)
}

.

Since Pm
l (0) 6= 0 only for l + m even and the term in curly brackets = (1 − (−1)m)(1 + exp(−imπ

2 )) 6= 0
only form m odd, the moments are 6= 0 only for both l and m odd, in which case

qlm = 2
{
1 + i(−1)k+1

}
√

2l + 1
4π

(l −m)!
(l + m)!

q al Pm
l (0) .

The first non-zero moments are

q1,±1 = ∓(1∓ i)

√
3

2 π
qa

q3,±1 = ±(1∓ i)

√
21

16 π
qa3

q3,±3 = ∓(1± i)

√
35

16 π
qa3

b): The charge density is

ρ(x) =
q

2πr2
[δ(r − a)δ(1− cos θ) + δ(r − a)δ(1 + cos θ)− δ(r)]

and yields

qlm = q

√
2l + 1

4π

{
al(1 + (−1)l)− 2δl,0

}
δm,0 =

{
q
√

2l+1
π al , m = 0 and l even but 6= 0
0 , otherwise
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The lowest non-zero moments are

q2,0 =

√
5
π

qa2 ; q2,m6=0 = 0

q4,0 =

√
9
π

qa4 ; q4,m6=0 = 0

c) and d): The potential is Φ(x) = 1
4πε0

∑
l,m

4π
2l+1ql,m

1
rl+1 Ylm(θ, φ). For the above case b) this is, when

keeping only the lowest non-vanishing term,

Φ(x) =
q

4πε0

a2

r3
(3 cos2 θ − 1) + ...

In the xy-plane, this is

Φ(r, θ =
π

2
) = − q

4πε0

a2

r3
+ ...

while the exact potential is

Φexact(r, θ =
π

2
) = − q

4πε0

{
2
r
− 2√

a2 + r2

}
≈ − q

4πε0

{
a2

r3
− 3a4

4r5
+ ...

}
,

in agreement with the multipole expansion.

Leading term

Exact

Figure 1: Upper panel: Exact potential and leading term vs. r/a. Lower panel: Relative deviation of
exact potential from its asymptotic form vs. r/a.
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2. Jackson, Problem 4.6 6 Points

a): The electric-quadrupole interaction is W = − 1
6

∑3
i,j=1 Qij

∂Ej

∂xi
(0).

In a cylindrically symmetric electric field it is, under the here valid assumption that ρ(0) = 0,

∇ ·E(0) = 0 =
∂Ex

∂x
(0) +

∂Ey

∂y
(0) +

∂Ez

∂z
(0) = 2

∂Ex

∂x
(0) +

∂Ez

∂z
(0) ,

and thus ∂Ex

∂x (0) = ∂Ey

∂y (0) = − 1
2

∂Ez

∂z (0).

From the cylindrical symmetry of the nuclear charge distribution, explained in class and noted on p.151
of the textbook, it follows Qij = 0 unless i = j. Also, Q11 = Q22. Further, since the trace Tr(Q) =
Q11 + Q22 + Q33 = 0, it is Q11 = Q22 = − 1

2Q33. The electric-quadrupole interaction thus is

W = −1
6

3∑

i,j=1

Qij
∂Ej

∂xi
(0) = −1

6

{
Q33

∂Ez

∂z
(0) + 2× (−1

2
∂Ez

∂z
(0))× (

−Q33

2
)
}

= −1
4

eQ
∂Ez

∂z
(0)

where per definitonem eQ = Q33.

b): The calculation yields ∂Ez

∂z (0) = −8.27 × 1020 V
m2 = −0.085 e

4πε0a3
0
. Note that e

4πε0a2
0

is the atomic unit
for electric field, and e

4πε0a3
0

that of electric-field inhomogeneity.

c): The outer perimeter of the nucleus is defined by the equation z2

a2 + ρ2

b2 = 1. Thus, the volume of the
nucleus is

V = 2π

∫ b

ρ=0





∫ a

√
1− ρ2

b2

−a

√
1− ρ2

b2

dz





ρdρ = 4πa

∫ b

ρ=0

√
1− ρ2

b2
ρdρ =

4π

3
ab2 .

The charge density ρC inside the nucleus is constant and given by ρC = Z/V , where Z is the order number
(here Z = 63). Further,

Q = 2πρC

∫
(2z2 − ρ2)ρdρdz ,

where the integral goes over the volume of the nucleus. With

2π

∫
(2z2 − ρ2)ρdρdz = 2π

∫ b

ρ=0





∫ a

√
1− ρ2

b2

−a

√
1− ρ2

b2

(2z2 − ρ2)dz





ρdρ

= 4π

∫ b

ρ=0

{
2
3
a3ρ

√
1− ρ2

b2

3

− aρ3

√
1− ρ2

b2

}
dρ

=
8
15

πab2(a2 − b2)

it is Q = 2Z
5 (a2 − b2) = 4Z

5 (a− b)R, where here R = (a + b)/2 = 7× 10−15m. Thus,

a− b

R
=

5
4ZR2

Q = 0.101 .
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3. Jackson, Problem 4.8 7 Points

Let φ denote the angle with respect to the external field. Then, because of symmetry the solution will only
contain terms ∝ ρ±n cos(nφ). After elimination of diverging terms other than that producing the external
field E0, the potential is of the following form:

Outer region:

Φ1 = −ρE0 cosφ +
∞∑

n=1

dnρ−n cos(nφ)

Middle region:

Φ2 =
∞∑

n=1

bnρn cos(nφ) +
∞∑

n=1

cnρ−n cos(nφ)

Inner region:

Φ3 =
∞∑

n=1

anρn cos(nφ)

Boundary condition on outer interface for D-field:

ε
∂Φ2

∂ρ

∣∣∣∣
b

= ε0
∂Φ1

∂ρ

∣∣∣∣
b

∀n : εnbnbn−1 − εncnb−n−1 = −ε0E0δn,1 − ε0ndnb−n−1

Boundary condition on outer interface for E-field:

∂Φ2

ρ∂φ

∣∣∣∣
b

=
∂Φ1

ρ∂φ

∣∣∣∣
b

∀n : −nbnbn−1 − ncnb−n−1 = E0δn,1 − ndnb−n−1

Boundary condition on inner interface for D-field:

ε0
∂Φ3

∂ρ

∣∣∣∣
a

= ε
∂Φ2

∂ρ

∣∣∣∣
a

∀n : ε0nanan−1 = εnbnan−1 − εncna−n−1

Boundary condition on inner interface for E-field:

∂Φ3

ρ∂φ

∣∣∣∣
a

=
∂Φ2

ρ∂φ

∣∣∣∣
a

∀n : −nanan−1 = −nbnan−1 − ncna−n−1
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Note that the boundary conditions for the E-field are equivalent with setting the potentials on the interfaces
equal. The system to be solved therefore is




a2n −a2n −1 0
a2n −εra

2n εr 0
0 εrb

2n −εr 1
0 b2n 1 −1







an

bn

cn

dn


 =




0
0

−E0b
2 δn,1

−E0b
2 δn,1


 ∀n (1)

where εr = ε/ε0. Since the determinant D = a2n(b2n(εr +1)2−a2n(εr−1)2) is generally 6= 0, all an, bn, cn, dn

are zero unless n = 1. For n = 1, with Kramer’s rule, Mathematica or equivalent one finds:

a1 = E0
4b2εr

a2(εr − 1)2 − b2(εr + 1)2

b1 = E0
2b2(εr + 1)

a2(εr − 1)2 − b2(εr + 1)2

c1 = E0
2a2b2(εr − 1)

a2(εr − 1)2 − b2(εr + 1)2

d1 = E0
b2(a2 − b2)(ε2r − 1)

a2(εr − 1)2 − b2(εr + 1)2

(2)
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b:) In the inner region, there is a homogeneous electric field of a size less than the outer field E0. In the
intermediate region, the field is inhomogeneous and weakest (see figure).
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Figure 2: Upper panel: Strength of inner field relative to outer field for b = 2a vs. dielectric constant of
the shell. The presence of the dielectric shell attenuates the field. Lower panel: Qualitative drawing of
electric field lines.
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c): Solid cylinder (case a = 0). We find

a1 = (irrelevant)

b1 = −E0
2

εr + 1
c1 = 0

d1 = E0
b2(εr − 1)

εr + 1
(3)

The inside field, given by b1 and c1, is homogeneous and attenuated by a factor 2
εr+1 relative to the outside

field. The d1-term reflects a “2D dipole moment” proportional to area, external field, and contrast (εr−1)
(εr+1) in

the dielectric constant.

Cylindrical cavity in bulk dielectric (case b →∞). We find

a1 = −E0
4εr

(εr + 1)2

b1 = −E0
2

εr + 1

c1 = −E0
2a2(εr − 1)
(εr + 1)2

d1 = (irrelevant)

(4)

Here, the outside field is given by b1 and c1. At large distances, the outside field is homogeneous and has a
magnitude given by b1. The cavity field, given by a1, is homogeneous and amplified by a factor 2εr

εr+1 relative
to the asymptotic outside field. The c1-term reflects a “2D dipole moment” of the cavity proportional to
area, the asymptotic outside field b1, and the contrast (εr−1)

(εr+1) in the dielectric constant.
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4. Jackson, Problem 4.10 6 Points

a): We first identify the solutions for E and D. Since there cannot be any potential differences on the
conductor surfaces, the electric fields in the regions with and without dielectric must essentially be the same.
The only question is whether there are any non-trivial structures in the field near the interface between the
dielectric and the free space between the two shells. We first claim that the E-field is very simple, namely
that it is identical with the field of a free point charge located at the origin. The claim is proved later by
showing that the corresponding solution satisfies all boundary conditions.

We assume that the E-field has the form E(r) ∝ r
r3 both in the regions with and without dielectric. Using

Gauss’s law on a sphere with radius a < r < b, it is then the case that

∮
D · da = Q = 2πr2(ε0E(r) + εE(r))

E(r) =
Q

2π(ε0 + ε)
r
r3

(5)

The free charge on the outer shell is then −Q, as can be seen by considering a Gaussian surface inside the
outer conductor.

The specified field is the only solution, because it satisfies the equations ∇ ·D = ρ and ∇ × E = 0 in the
volume of interest, it satisfies the general boundary conditions for E- and D-fields at the interface between
the dielectric and the free space, and it produces the correct charges on the inner and outer shells.

b): We use the usual boundary condition n̂ · (D2−D1) = σfree, where n̂ is a unit vector pointing from region
1 to region 2. Since D = 0 inside conductors, on the part of the inner surface facing the dielectric-free region
the condition reads

σfree = r̂ ·D(a) =
Qε0

2π(ε0 + ε)
r̂ · r

a2
=

Qε0
2πa2(ε0 + ε)

and on the part facing the dielectric it is

σfree =
Qε

2πa2(ε0 + ε)

c): Here, P(r) = (ε − ε0)E(r). The volume polarization charge density ρpol = −∇ · P = 0 everywhere.
The surface polarization charge density generally is given by n̂ · (P1 −P2) = σpol, where n̂ is a unit vector
pointing from region 1 to region 2. On the part of the inner surface facing the dielectric the condition reads

σpol = −r̂ ·P(a) = − Q(ε− ε0)
2πa2(ε0 + ε)

;

on the part facing the dielectric-free space it is σpol = 0.

Not required: On the interface between the dielectric and the dielectric-free volume it is P ⊥ n̂ and thus
σpol = 0. On the part of the outer surface facing the dielectric it is σpol = +r̂ ·P(b) = Q(ε−ε0)

2πb2(ε0+ε) .
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