Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 7

Maximal score: 25 Points

1. Jackson, Problem 5.1 6 Points

Consider the i-th cartesian component of the B-Field,
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Thus, B; = %a‘ziﬂ(x), and



2. Jackson, Problem 5.3

6 Points

Consider a loop current with radius R around the z-axis. The loop is centered at location zz’. Then, the

magnetic field at an observation point zz is
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Now, consider a solenoid the axis of which coincides with the z-axis. The solenoid has N windings per length,

current I, and end points 27 and z;. Then, the amount of current flowing across a length dz’ is dI = INdz’,

and
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with angles 67 and 03 as shown in the problem statement.
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3. Jackson, Problem 5.8 7 Points

a): In the Coulomb gauge, VA = —pgJys(r, 9)(5 Using a variable separation method, we construct a
solution of the form A = Ay(r, 0)¢. (By finding the solution of that form, it is shown that it exists.) The

following derivatives of spherical unit vectors are useful:
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Thus, writing out V2 <A¢(r, 9)(&) = —poJy(r, 9)(5 in spherical coordinates yields:
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This is a 2-nd order, linear, inhomogeneous PDE for Ay(r,#), similar to the Poisson equation, which is
solvable. To identify the behavior inside and outside the current distribution, we solve the homogeneous

equation by separation of variables. Writing Ay(r,6) = U(T) ©(0), it is
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The angular equation is the generalized Legendre differential equation,
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which has the regular solution P} (cos#); note that Pfl(cos 0) is linearly dependent. This finding justifies a

posteriori that I(I + 1) with { = 1,2... is a good choice for the separation variable. The radial equation,
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has the solution



U(r) = Apr'*t + By

Summarizing, the interior and exterior solutions are found to be
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There, we also define the multipole moments m; and ;. Note that the {Pll(x),l =1,2, 3..} form a complete
orthogonal set on the interval [—1,1].

b): In analogy with electrostatics, spherical multipole moments are obtained by expanding ﬁ in spherical

harmonics. For azimuthal current distributions it is, for an observation point with ¢ = 0,
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Upon integration over ¢’, only m = 41 give non-zero contributions. For each [, the m = 1 and m = —1
terms are equal; to show this, use the fact that ¢ = 0, and Eqgs. 3.51 and 3.53 of the textbook. Thus,
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For the interior region, r- = r and r~ =7/, and
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Comparison with Eq. 1 shows that
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Similarly, for the exterior region, r~ = and r« =7/, and
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Comparison with Eq. 1 shows that
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4. Jackson, Problem 5.13 7 Points

There is an azimuthal surface current K(#') = ¢/ sin@’aw. The corresponding three-dimensional current

density is
i, 0") = YK O)5(r' — a) = ¢osinf awd(r' — a) = ¢/ Jy(r",0')

Using Eq. 2 of the previous problem and f:ll P ()P (x)de = 2111 (§+2),5l y and P! = —sind, it is
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Thus, it is outside the sphere

A cxterior (T7 0) =9

and inside
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Using that for azimuthal A itis B=V X A =f——0y [sinfAy] — é%@r [rAy] it is found:
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which is the field of a magnetic dipole m = z @, and
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which is a homogeneous magnetic field in z-direction.



