Instructor: Jianming Qian

Due date: November 29, 2001
Physics 505: Solutions to Assignment #10

Problem 6.14
(a) The charge on the plate

Qt) = /Ot I(tdt' = i—osinwt

assuming there is no static charge. In a cylindrical coordinate system, the electric field is along the z and the magnetic
field is along the ¢ based on the symmetry of the problem. Let (Fo, 1) and (Bo, B1) be the first two non-zero terms
in the electric and magnetic field expansions:

B(f)=(Eo+E)%  B(R) = (Bo+ Bi)o
The first order of the field is given by
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From Ampere-Maxwell’s law, changing in electric field results in magnetic field:
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ot = ;a_p(pBO) = /LOEOW = 7'['a2 COS((A)t) = BO = Ea cos(wt)

Note that there is no static magnetic field. The oscillating magnetic field gives rise to additional electric field:
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This additional electric field in turn contributes to the magnetic field according to Ampere-Maxwell’s law:
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Combining two contributions together,
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Converting the electric and magnetic fields obtained in (a) into complext notation:
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Therefore the total average energies in electric and magnetic fields are:
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The total charge on the plate to the second order:
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Plugging into [w.dr and [ w,,dr:

(¢) The reactance
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equivalent to the reactance of an inductor I = pod/8m and a capacitor C = 607m2/d connected in series. The
resonance frequency
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Problem 7.2
(a) Choose a coordinate system such that the electric field is along the x—axis, the magnetic field along the y—axis
and the wave propogates in z—direction. In medium 7, the incident and reflected waves are described by:

E_w’i _ Eiei(hszt)i,’ Ez — f_iei(klszt)g
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In medium ngy, there are both forward (denoted as +) and backward (—) propogating waves and are described by:
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In medium ng, there is only transmitted wave:
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where k1 = w/vy, k2 = w/vg, and k3 = w/vs are wave numbers in the three media. For nonpermeable media
(11 =2 g =~ p3 & Lig), EH and BH are continuous at each interface (z = 0,d). At « =0, one has:
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At x = d, one has:
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The four equations are then
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Solving for ETet*2? and F~e~%#2¢ from the last two equations:
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Add the first two equations to eliminate E":
2EE — (1 +Oé)E+ 4 (1 _ Oé)E7 — §Ete’bk3d {1 +a)(1 +ﬂ)671k2d + (1 _ Oé)(l _ ﬂ)elkzd}

Solving for £ in terms of F':

% = %e““?’d{(l + af) cos(kad) — 2i(a + B) sin(kad)}

Therefore,

1|2 |2 (14 af)? cos?(kad) + (o + B)? sin?(kad) = (1 + aB)? — (1 — a®)(1 — 8%) sin?(kod)

The transmission coeflicient 7
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It varies between the two extremum values
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as a function of w for a fixed d or as a function of d for fixed w. From the energy conservation, the reflection coefficient
Ris
R (s — na)? + (03 — n3) (03 — ) sin? (nadw/)

R=1-T=
nZ(ny +ns)?+ (n — nd)(nZ — n?) sin2(n2dw/c)

In the special case of d = 0, the coefficients reduce to the familiar forms of two media.
(b) For ng = 1, the reflection coefficient

B n%(nl — 1)2 + (n% — 1)(n§ — n%) sinz(ngdw/c)

C n2(ng +1)2 + (02 — 1)(n2 — n2) sin®(ngdw/c)

To have zero reflection at w = wg, the following condition must be satisfied:
n3(ny —1)? + (n3 — 1)(n% — n?) sin*(nadwo/c) = 0
Since ny > 1,n2 > 1, this is only possible if ng < ny. One set of possible solutions is given by
sin(nadwo/c) =1, and  n3(ng — 1%+ (3 —1)(n3 —ni) =0
This leads to
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where ¢ is a non-zero integer.

Problem 7.3

Note: only need to consider the polarization perpendicular to the plane of incidence and assume g = pig in all media.
(a) Assuming the wave incident from left, let Fp and E(;/ be the incident and reflected waves on the left surface, F.
and E/_ be the right and left traveling waves on the left surface in the air gap, 6 be the incident angle, and 6’ be the

refracted angle (nsin@ = sin¢’) in the gap on the left surface, the boundary conditions (parallel components of E
and H continous) on the left surface lead to:

Fo + E(;/ =F, 4+ E_ ncos@(Fo — E(;/) =cosb' (K. — F_)

On the right surface, the incident and reflected waves are F, e'** and E_e~** where £ = d/ cos ¢’ is the path length
between the two surfaces and k = w/c is the wave number in air. Let £j be the transmitted wave, the boundary
conditions on the right surface lead to:

E " L B e = F) cos0'(Ey e — B_e ") = ncosOE)
Defining
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the four boundary equations are:

B +EBE_ =FE+E, B —E_ =pFE—-E,)

E_ / E_ ;
E —=F E,——=p3FE
by + — o b= BE,

Solving these equations for E, and F:
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where ¢ = kd/ cos ' = wd/(ccos0'). The transmission coefficient

Bl (48)?

P = B = A= = (1=F) — 201 = ) cos(29)

B (4n cos 0 cos 9’)2
~ (ncosf +cosf)* + (ncos — cos0')% — 2(n2 cos? § — cos? §')2 cos(2wd/(c cos 0'))

The reflection coeflicient

_ B 2(1 — )*(1 — cos §)

= P T A8 = (1= A =201 = )% cos(29)

B 4(n2 cos? 0 — cos? 9’)2 sin? (wd/ccosb')
a (ncos® + cos§')* + (ncosf — cosB')* — 2(n? cos? O — cos? 0')2 cos(2wd/(ccos 0'))

It is easy to verify that R +7 = 1.
(b) For § > 0, = sin" *(1/n), cos @’ = \/1 —sin? ¢’ = \/1 —n2sin?6 = i\/n2 sin?@ — 1 = i|cos 0’| is a pure imaginary.
The transmission coefficient
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as expected.

Problem 7.4 ;

(a) At normal incidence, the reflected wave £ is given by
E(/)/ _1-n
o 14+n

where n = ¢/v = ¢ /pe is the index of refraction of the medium and Fjy is the incidence wave. For a conductor,

€ & o /w. Therefore,
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where 6 = /2/(pow) is the skin depth. Therefore,

By 1-n_ 1—(1+i)c/(wd)

= = = re'?
Ey 1+n 1+(141d)c/(wd)

where 7 and ¢ are the amplitude and the phase of the ratio respectively:
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For a perfect conductor, 0 — co = § — 0, the amplitude and the phase
r—1 and tan¢g -0 (¢ — )

As expected the reflected wave has a 180° phase change with respect to the incident wave.
(b) The reflection coefficient

whét + 4ct L4 (wd/e)t/4 ) 2w_6
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