
Physics 505 Fall 2007

Homework Assignment #8 — Solutions

Textbook problems: Ch. 5: 5.13, 5.14, 5.15, 5.16

5.13 A sphere of radius a carries a uniform surface-charge distribution σ. The sphere is
rotated about a diameter with constant angular velocity ω. Find the vector potential
and magnetic-flux density both inside and outside the sphere.

The charge density for a uniformly charged sphere of radius a is simply

ρ(~x ) = σδ(|~x | − a)

Since the sphere is rotating with constant angular velocity ~ω, the velocity at any
point ~x on the sphere is given by ~v = ~ω × ~x. This allows us to write the current
density as

~J = ρ~v = σ ~ω × ~x δ(|~x | − a)

In Coulomb gauge, the vector potential is then given by

~A(~x ) =
µ0

4π

∫ ~J(~x ′)
|~x− ~x ′|

d3x′ =
µ0σa

3

4π
~ω ×

∫
x̂′

|~x− ~x ′|
dΩ′ (1)

where |~x ′| = a. There are several ways to perform the angular integral. One quick
method is to realize that the integral is a vector quantity. Then, by symmetry,
once the dΩ′ integral is performed, the only direction it can point in is given by
x̂. This allows us to write ∫

x̂′

|~x− ~x ′|
dΩ′ = f(r)x̂

where f(r) is a function to be determined. In fact, by dotting both sides with x̂,
we see that

f =
∫

cos γ
|~x− ~x ′|

dΩ′ =
∑
l

rl<
rl+1
>

∫
P1(cos γ)Pl(cos γ)dΩ′

where cos γ = x̂ · x̂′ and where

r< = min(r, a), r> = max(r, a)

Orthogonality of the Legendre polynomials then selects out l = 1, so that f =
(4π/3)(r</r2>) or ∫

x̂′

|~x− ~x ′|
dΩ′ =

4π
3
r<
r2>
x̂



Inserting this into (1) gives

~A(~x ) =
µ0σa

3

3r
r<
r2>
~ω × ~x

More explicitly, we have

~A =


µ0σa

3
~ω × ~x r < a

µ0σa
4

3r3
~ω × ~x r > a

The magnetic induction is now given by

~Bin = ~∇× ~Ain =
µ0σa

3
~∇× (~ω × ~x ) =

2µ0σa

3
~ω r < a

and

~Bout = ~∇× ~Aout =
µ0σa

4

3
~∇×

(
~ω × ~x
r3

)
=
µ0σa

4

3
3x̂(ω · x̂)− ~ω

r3
r > a

The magnetic induction inside the sphere is uniform and parallel to the axis of
rotation, while the magnetic induction outside is a dipole pattern with magnetic
moment

~m =
4π
3
σa4~ω

5.14 A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative
permeability µr, is placed in a region of initially uniform magnetic-flux density ~B0 at
right angles to the field. Find the flux density at all points in space, and sketch the
logarithm of the ratio of the magnitudes of ~B on the cylinder axis to ~B0 as a function
of log10 µr for a2/b2 = 0.5, 0.1. Neglect end effects.

For a long cylinder (neglecting end effects) we may think of this as a two-
dimensional problem. Since there are no current sources, we use a magnetic scalar
potential ΦM which must be harmonic in two dimensions. Since ~H = −~∇ΦM ,
we orient the uniform magnetic field H0 along the +x axis and write

ΦM (ρ, φ) =


(−H0ρ+ α

ρ ) cosφ, ρ > b

(βρ+ γ
ρ ) cosφ, a < ρ < b

δρ cosφ, ρ < a

(2)

Of course, the general harmonic expansion would be of the form (Amρm +
Bmρ

−m) cosmφ+ (Cmρm+Dmρ
−m) sinmφ. However here we have already used

the shortcut that all matching conditions for m 6= 1 lead to homogeneous equa-
tions admitting only a trivial (zero) solution.



The magnetostatic boundary conditions demand that Hφ and Bρ are continuous
at both ρ = a and ρ = b. This results in four equations for the four unknowns α,
β, γ and δ. The magnetic field (and magnetic induction) components are

Hφ = −1
ρ

∂

∂φ
ΦM =


(−H0 + α

ρ2 ) sinφ, ρ > b

(β + γ
ρ2 ) sinφ, a < ρ < b

δ sinφ, ρ < a

and

Bρ = −µ ∂

∂ρ
ΦM =


µ0(H0 + α

ρ2 ) cosφ, ρ > b

µ(−β + γ
ρ2 ) cosφ, a < ρ < b

−µ0δ cosφ, ρ < a

The resulting matching conditions at a and b are

−H0 +
α

b2
= β +

γ

b2
, H0 +

α

b2
= µr

(
−β +

γ

b2

)
β +

γ

a2
= δ, β − γ

a2
=

1
µr
δ

where µr = µ/µ0. These equations may be solved to yield

α = ∆−1(µr − µ−1
r )(b2 − a2)H0

β = −2∆−1(1 + µ−1
r )H0

γ = −2∆−1(1− µ−1
r )a2H0

δ = −4∆−1H0

where

∆ = (1+µr)(1+µ−1
r )+(1−µr)(1−µ−1

r )
(a
b

)2

=
1
µr

[
(µr + 1)2 − (µr − 1)2

(a
b

)2
]

(3)
Substituting these coefficients in (2) gives the magnetic scalar potential

ΦM = −H0 cosφ×


ρ− (b2 − a2)(µr − µ−1

r )
∆ρ

, ρ > b

2
∆

(
(1 + µ−1

r )ρ+ (1− µ−1
r )

a2

ρ

)
, a < ρ < b

4
∆
ρ, ρ < a

We see that the magnetic induction for ρ < a is uniform, pointed along the same
direction as ~B0, but reduced by a factor of 4/∆. The other two regions contain
a dipole field in addition to a uniform component.

Since ~H = −~∇ΦM = (4/∆)H0x̂ for ρ < a, the ratio of ~B on axis (ρ = 0) to ~B0

is given by
B

B0
=

4
∆

=
4µr

(µr + 1)2 − (µr − 1)2(a/b)2
(4)



This may be plotted as follows
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5.15 Consider two long, straight wires, parallel to the z axis, spaced a distance d apart and
carrying currents I in opposite directions. Describe the magnetic field ~H in terms of
a magnetic scalar potential ΦM , with ~H = −~∇ΦM .

a) If the wires are parallel to the z axis with positions, x = ±d/2, y = 0, show
that in the limit of small spacing, the potential is approximately that of a two-
dimensional dipole

ΦM ≈ −
Id sinφ

2πρ
+O(d2/ρ2)

where ρ and φ are the usual polar coordinates.

We start with the magnetic induction for a single wire located at x = y = 0 and
carrying current in the +ẑ direction. By elementary application of Ampère’s law,
we have

~B =
µ0I

2πρ
φ̂ ⇒ ~H =

I

2πρ
φ̂

Assuming ~H = −~∇ΦM , and using ~∇ = ρ̂ ∂
∂ρ + φ̂ 1

ρ
∂
∂φ in polar coordinates, we see

that the above magnetic field may be obtained from a magnetic scalar potential

ΦM = − I

2π
φ (5)

Note that this expression is multiple valued. The reason for this is that the
current source at the origin (ie the wire carrying current I) violates the curl-free
condition ~∇ × ~H = 0 at the origin. Although the magnetic scalar potential is
multiple valued when we go around the origin, the physical magnetic field ~H is
well defined everywhere (except at ρ = 0).

For two parallel wires with currents ±I (in the ẑ direction) and positions (x, y) =
(±d/2, 0), we superpose (5) to obtain

ΦM = − I

2π
(φ1 − φ2) = − I

2π

(
tan−1 y

x− d/2
− tan−1 y

x+ d/2

)



where φ1 and φ2 are as indicated

)

/2d d/2−

ϕ2 ϕ1

( x,y

Using

tan−1 α− tan−1 β = tan−1 α− β
1 + αβ

gives

ΦM = − I

2π
tan−1 yd

x2 + y2 − d2/4
= − I

2π
tan−1 (d/ρ) sinφ

1− 1
4 (d/ρ)2

(6)

where we have used ρ2 = x2 + y2 and y = ρ sinφ. In the limit of small spacing,
the arctan may be expanded in powers of d/ρ. The leading term gives the desired
result

ΦM ≈ −
I

2π
d

ρ
sinφ+O

(
(d/ρ)3

)
(7)

Note that only odd powers of d/ρ appear in the Taylor expansion. In fact, the
full expansion of (6) yields

ΦM = − I

2π

[
d

ρ
sinφ+

1
12

(
d

ρ

)3

sin 3φ+
1
80

(
d

ρ

)5

sin 5φ+ · · ·

]

= − I

2π

∞∑
n=0

2
(2n+ 1)

(
d

2ρ

)2n+1

sin[(2n+ 1)φ]

This form of ΦM =
∑

(Am/ρm) sin(mφ) satisfies Laplace’s equation in two-
dimensional polar coordinates, as it must. The series converges for ρ > d/2,
so it may be considered an ‘outside’ solution for this problem.

b) The closely spaced wires are now centered in a hollow right circular cylinder of
steel, of inner (outer) radius a (b) and magnetic permeability µ = µrµ0. Deter-
mine the magnetic scalar potential in the three regions, 0 < ρ < a, a < ρ < b,
and ρ > b. Show that the field outside the steel cylinder is a two-dimensional
dipole field, as in part a, but with a strength reduced by the factor

F =
4µrb2

(µr + 1)2b2 − (µr − 1)2a2

Relate your result to Problem 5.14.



Using the approximation (7), we write the magnetic scalar potential in all three
regions as

ΦM =


α
ρ sinφ, ρ > b

(βρ+ γ
ρ ) sinφ, a < ρ < b

(− I
2π

d
ρ + δρ) sinφ, ρ < a

(8)

where α, β, γ and δ are constants to be determined. Note that we allow the
dipole potential (7) in the interior region to be modified by the addition of δρ sinφ
because of the presence of the steel cylinder. This expression for ΦM is similar to
that of (2) corresponding to a cylinder in a region of initially uniform magnetic
induction ~B0. However, here the source term −(I/2π)(d/ρ) sinφ is a dipole source
for ρ < a as opposed to a uniform source −H0ρ cosφ for ρ > b. In any case, we
match Hφ and Bρ at both ρ = a and ρ = b. The components Hφ and Bρ are

Hφ = −1
ρ

∂

∂φ
ΦM =


− α
ρ2 cosφ, ρ > b

−(β + γ
ρ2 ) cosφ, a < ρ < b

( I
2π

d
ρ2 − δ) cosφ, ρ < a

and

Bρ = −µ ∂

∂ρ
ΦM =


µ0

α
ρ2 sinφ, ρ > b

µ(−β + γ
ρ2 ) sinφ, a < ρ < b

−µ0( I
2π

d
ρ2 + δ) sinφ, ρ < a

The resulting matching conditions at a and b are

α

b2
= β +

γ

b2
α

b2
= µr

(
−β +

γ

b2

)
β +

γ

a2
= − I

2π
d

a2
+ δ β − γ

a2
=

1
µr

(
I

2π
d

a2
+ δ

)
This simultaneous system of four equations for four unknowns may be solved to
yield

α = −2Id
π∆

β = − Id

π∆
1− µ−1

r

b2

γ = − Id

π∆
(1 + µ−1

r )

δ = − Id

2π∆
(a2 − b2)(µr − µ−1

r )
a2b2

where

∆ =
1
µr

[
(µr + 1)2 − (µr − 1)2

(a
b

)2
]



is defined identically with (3). Substituting these coefficients into (8) gives

ΦM = − Id
2π

sinφ×



4
∆ρ

, ρ > b

2
∆

(
(1− µ−1

r )
b2

ρ+
(1 + µ−1

r )
ρ

)
, a < ρ < b

1
ρ
− (b2 − a2)(µr − µ−1

r )
∆a2b2

ρ, ρ < a

Since the dipole field for ρ < a is generated by the 1/ρ term in the third line
above, we see that the external (ρ > b) field is also a dipole, but with strength
reduced by the factor

F =
4
∆

=
4µr

(µr + 1)2 − (µr − 1)2(a/b)2
(9)

Note that this shielding factor is identical to (4), which was obtained in the
solution to Problem 5.14. This demonstrates that the shielding factor from inside
to outside is identical to that from outside to inside.

c) Assuming that µr � 1, and b = a + t, where the thickness t � b, write down
an approximate expression for F and determine its numerical value for µr = 200
(typical of steel at 20 G), b = 1.25 cm, t = 3 mm. The shielding effect is relevant
for reduction of stray fields in residential and commercial 60 Hz, 110 or 220 V
wiring. [The figure illustrates the shielding effect for a/b = 0.9, µr = 100.]

Taking a = b− t, we may express the ratio a/b = 1− t/b. Substituting this into
(9) gives

F =
4µr

4µr + (t/b)(2− t/b)(µr − 1)2
=
[
1 + µr

t

2b

(
1− t

2b

)
(1− µ−1

r )2
]−1

≈
(

1 +
µrt

2b

)−1

Substituting in the above values gives

F ≈ 1
25

= 0.04

In other words, the external dipole field is reduced by a factor of 25 compared
with the field inside the steel shield.

5.16 A circular loop of wire of radius a and negligible thickness carries a current I. The
loop is centered in a spherical cavity of radius b > a in a large block of soft iron.
Assume that the relative permeability of the iron is effectively infinite and that of the
medium in the cavity, unity.



a) In the approximation of b� a, show that the magnetic field at the center of the
loop is augmented by a factor (1 + a3/2b3) by the presence of the iron.

Since this problem involves a current loop, we take a vector potential approach.
For a circular loop of radius a in the x-y plane in free space, we have found the
expression for the vector potential

Aloop
φ =

µ0Ia

2

∑
l odd

1
l(l + 1)

rl<
rl+1
>

P 1
l (0)P 1

l (cos θ)

where r< = min(r, a) and r> = max(r, a). Of course, since the current loop
is centered in a spherical cavity, this cannot be the complete answer. In order
to find the appropriate solution, we note that, by linear superposition, we may
add an arbitrary solution to Laplace’s equation, ∇2 ~A = 0, to the above. Tak-
ing advantage of cylindrical symmetry, the general solution to the homogeneous
equation may be written as

A
(0)
φ =

∑
l

(
Alr

l +
Bl
rl+1

)
P 1
l (cos θ)

where Al and Bl are coefficients to be determined. (This was essentially demon-
strated in Problem 5.8.) Taking an inside solution requires us to set Bl = 0, so
that the vector potential is well behaved as r → 0. Superposing ~Aloop and ~A(0)

then gives

Aφ =
µ0Ia

2

∑
l odd

1
l(l + 1)

(
rl<
rl+1
>

+ αlr
l

)
P 1
l (0)P 1

l (cos θ) (10)

where we have chosen to write the homogeneous solution using a new set of
expansion coefficients αl for convenience. Although the homogeneous solution
could in principle involve even l terms, it is easy to see that such terms must
vanish as they would not be sourced by the current loop (which only generates
odd l terms).

Assuming the relative permeability of the iron is effectively infinite, the boundary
conditions indicate that the magnetic field must end up being perpendicular to
the surface of the cavity. In other words, the parallel component of ~B must vanish
at r = b. Because of azimuthal symmetry, the only parallel component of interest
is

Bθ(r = b) = −1
r

∂

∂r
(rAφ)

∣∣∣∣
r=b

=
µ0Ia

2

∑
l odd

1
l(l + 1)

(
l
al

rl+2
− (l + 1)αlrl−1

)
P 1
l (0)P 1

l (cos θ)

∣∣∣∣∣
r=b

=
µ0Ia

2

∑
l odd

bl−1

l(l + 1)

(
l
al

b2l+1
− (l + 1)αl

)
P 1
l (0)P 1

l (cos θ)



where we have used r< = a and r> = r when computing Bθ at the surface of the
cavity. Setting this parallel component to zero gives

αl =
l

l + 1
al

b2l+1

in which case (10) becomes

Aφ =
µ0Ia

2

∑
l odd

1
l(l + 1)

(
rl<
rl+1
>

+
l

l + 1
(ar)l

b2l+1

)
P 1
l (0)P 1

l (cos θ)

Note that for r < a this expression may be rewritten as

Aφ =
µ0I

2

∑
l odd

1
l(l + 1)

( r
a

)l(
1 +

l

l + 1

(a
b

)2l+1
)
P 1
l (0)P 1

l (cos θ)

Using
d

dx
[
√

1− x2P 1
l (x)] = l(l + 1)Pl(x)

gives

Br =
1

r sin θ
∂

∂θ
(sin θAφ)

= −µ0I

2a

∑
l odd

( r
a

)l−1
(

1 +
l

l + 1

(a
b

)2l+1
)
P 1
l (0)Pl(cos θ)

and

Bθ = −1
r

∂

∂r
(rAφ)

= −µ0I

2a

∑
l odd

1
l

( r
a

)l−1
(

1 +
l

l + 1

(a
b

)2l+1
)
P 1
l (0)P 1

l (cos θ)

This demonstrates that the l-th component of the magnetic induction is enhanced
by a factor

Fl = 1 +
l

l + 1

(a
b

)2l+1

(11)

compared to a current loop in free space. The field at the center of the loop
is given by setting r = 0, in which case only the l = 1 term contributes. The
enhancement factor is then

F1 = 1 +
1
2

(a
b

)3

(12)

Note that this result is valid, even if b is not much greater than a (so long as we
assume the iron has infinite relative permeability).



b) What is the radius of the “image” current loop (carrying the same current) that
simulates the effect of the iron for r < b?

As long as we work in the limit b � a, the l = 1 enhancement factor F1 domi-
nates over the others in the sense that (a/b)2l+1 gets much smaller as l increases.
Because of this, all we need out of an approximate “image loop’ is the correct
enhancement of the magnetic dipole. In the dipole approximation, an isolated
current loop of radius R has magnetic induction

Bz =
µ0I

2R

at its center. For the enhancement factor F1 given in (12), the magnetic induction
is explicitly

Bz =
µ0I

2a

(
1 +

1
2

(a
b

)3
)

=
µ0I

2a
+

µ0I

2(2b3/a2)

The first term on the right is interpreted as the magnetic induction from the real
loop, while the second is that from the image loop. This indicates that the radius
of the image loop is

Rimage =
2b3

a2

which is greater than b (as appropriate for an image).

Note that no exact single image loop solution is possible, as the enhancement
factor (11) is l dependent, and a l dependent radius simply does not make sense.
The reason this approximation makes sense for b� a is that in this case the l > 1
image moments are insignificant, and may be ignored.


