Physics 505

Practice Final

The final will be a three hour open book, open notes exam. Do all four problems.

- 1. Two point charges q and -q are located on the z axis at z = +d/2 and z = -d/2, respectively.
 - a) If the charges are isolated in space, show that the potential admits a Legendre expansion

$$\Phi(r,\theta) = \frac{2q}{4\pi\epsilon_0} \sum_{l \text{ odd}} \frac{r_{<}^l}{r_{>}^{l+1}} P_l(\cos\theta)$$

where $r_{<} = \min(r, d/2)$ and $r_{>} = \max(r, d/2)$.

b) Now consider the charges to be contained inside a linear dielectric sphere of permittivity ϵ and radius a (where a > d/2).

Find the electric potential everywhere as an expansion in Legendre polynomials.

- 2. A point magnetic dipole \vec{m} is located in vacuum pointing away from and a distance d away from a semi-infinite slab of material with relative permeability μ_r .
 - a) Find the magnetic induction everywhere.
 - b) What is the force on the dipole (magnitude and direction)?
- 3. An infinitely long solenoid of radius a has N tightly wound turns per unit length. For a constant current I, elementary considerations tells us that the magnetic induction is uniform inside the solenoid. In cylindrical coordinates, $\vec{B} = \mu_0 N I \hat{z} \Theta(a - \rho)$ where $\Theta(\xi) = 1$ if $\xi > 0$ (and 0 otherwise) is the unit step function.

This problem, however, involves a sinusoidal current $I(t) = I_0 e^{-i\omega t}$. In the following, consider only the inside of the solenoid and assume all fields vanish outside.

- a) By symmetry considerations, the time-dependent magnetic induction only has a non-vanishing z component, $B_z(\rho)e^{-i\omega t}$. Show that the electric field only has a component along the $\hat{\phi}$ direction. Consider the inside of the solenoid only.
- b) Find the exact solution for $B_z(\rho)$ inside the solenoid. Give your result in terms of the maximum current I flowing through the wires of the solenoid.

 $Over \longrightarrow$

4. A plane polarized electromagnetic wave of frequency ω in free space is incident with angle *i* on the flat surface of an excellent conductor ($\mu = \mu_0$, $\epsilon = \epsilon_0$ and $\sigma \gg \omega \epsilon_0$) which fills the region z > 0.

Consider *only* linear polarization perpendicular to the plane of incidence.

a) If the incident wave is given by $\vec{E} = \vec{E}_i e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, show that (in the limit $\sigma \gg \omega \epsilon_0$) the magnitude of the electric field inside the conductor is

$$E_c = E_i \gamma \cos i \, e^{-z/\delta} e^{i(kx \sin i + z/\delta - \omega t)}$$

where

$$\delta = \sqrt{\frac{2}{\omega\mu_0\sigma}}$$
 and $\gamma = (1-i)\sqrt{\frac{2\epsilon_0\omega}{\sigma}}$

The z direction is perpendicular to the flat surface of the conductor, while the x direction is parallel to it.

b) Show that the time averaged power per unit area flowing into the conductor is given by $S^{\perp} = \epsilon_0 |E_i|^2 \omega \delta \cos^2 i$.