Problem 2.7

Consider a potential problem in the half-space defined by z > 0, with Dirichlet boundary
conditions on the plane z = 0 (and at infinity).

2.7.a. Write down the appropriate Green function G(Z, 7).
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where x1, x5, and x5 denote the z, y , and z coordinates, respectively.

2.7.b.

If the potential on the plane z = 0 is specified to be & = V inside a circle of radius a centered
at the origin, and & = 0 outside that circle, find an integral expression for the potential at
the point P specified in terms of cylindrical coordinates (p, ¢, 2).

We’re going to use equation 1.44 from Jackson:
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Note that ®(7') = V inside the circle of radius a centered at the origin.

Let’s convert Gp(#,Z") to cylindrical coordinates:
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We need to find the normal derivative of Gp. Note that the normal points away from the

region of interest — since we're considering z > 0, let n = —2":
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Note that the terms which “cancel to zero” do so because the derivatives of the two terms

of Gp sum to zero when evaluated at 2’ = 0.

Now, plug this into equation (1). Note that we only need to integrate over the circle which

has potential V' because the integrand is zero elsewhere.
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2.7.c. Show that, along the axis of the circle (p = 0), the potential

is@:‘/(l—\/ﬁ).

Letting p = 0:
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Using the substitution v = p + 22 and du = 2p':
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2.7.d.

Show that at large distances (p* + 22 > a?) the potential can be expanded in a power series
in (p? + 2?)7!, and that the leading terms are:
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Verify that the results of part ¢ and d are consistent with each other in their common range
of validity.
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For p=0:
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Hence, parts ¢ and d agree in the limit where 22 >> a?.

Problem 2.9

An insulated, spherical, conducting shell of radius « is in a uniform electric field Fy. If

the sphere is cut into two hemispheres by a plane perpendicular to the field, find the force
required to prevent the hemispheres from separating

2.9.a. If the shell is uncharged.

From Jackson’s example problem in section 2.5, we know that the surface-charge density is

given by:

o = 3eoFpycost

Using the equation shown in figure 2.4:
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Using the substitution v = cos#, du = sin 6:
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2.9.b. If the total charge on the shell is Q.

The surface charge density on the sphere of charge @ is:
Q
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Now, we find the same method as above to find the force between the two hemispheres of
equal charge:
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Using the substitution u = sin 6, du = cos 6:
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The total force on the sphere due to the sphere’s own charge () and the electric field is the
sum of the force found in part a and the force we just found:
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Problem 2.10

A large parallel plate capacitor is made up of two plane conducting sheets with separation
D, one of which has a small hemispherical boss of radius a on its inner surface D > a. The
conductor with the boss is kept at zero potential, and the other conductor is at a potential
such that far from the boss the electric field between the plates is Fj.

Figure 1: Setup for problem 2.10

2.10.a. Calculate the surface-charge densities at any arbitrary point
on the plane and on the boss, and sketch their behavior as a func-
tion of distance (or angle).

Assuming the planes to be infinite and very far from each other, we see that this system can
be approximated by grounded sphere in a uniform electric field (we are given that the purpose
of the non-grounded plate is to cause the electric field between the plates to be constant and
uniform). Hence, equation 2.14 from Jackson gives the electric potential between the plates:

o= I ( _ ai’) cosf (2)
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On the boss, the surface-charge density is the same as equation 2.15 from Jackson:

’a = 30k COSQ‘
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To find the surface-charge density on the grounded plane (located at z = 0), we first convert
equation (2) to Cartesian coordinates:
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2.10.b. Show that the total charge on the boss has the magnitude
3reqEya®.

We will integrate the surface-charge density over the surface area of the boss to find its net
charge:
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Using the substitution v = sin 6, du = cos 6:
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2.10.c.

If, instead of the other conducting sheet at a different potential, a point charge ¢ is placed
directly above the hemispherical boss at a distance d from its center, show that the charge
induced on the boss is:
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This system is shown in figure 2

Figure 2: Setup for problem 2.10.c
The potential for this system is
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Converting to spherical coordinates
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