
Problem 1.14

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and Neumann bound-
ary conditions on the surface S bounding the volume V . Apply Green's theorem (1.35) with
integration variable ~y and ' = G(~x; ~y),  = G(~x0; ~y), with r2

yG(~z; ~y) = �4��(~y � ~z). Find
an expression for the di�erence [G(~x; ~x0)�G(~x0; ~x)] in terms of an integral over the boundary
surface S.
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1.14.a

For Dirichlet boundary conditions on the potential and the associated boundary condition
on the Green function, show that GD(~x; ~x

0) must be symmetric in ~x and ~x0.

Note that GD(~x; ~y) = 0 and GD(~x
0; ~y) = 0 on the bounding surface. Therefore:
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1.14.b

For Neumann boundary conditions, use the boundary conditions (1.45) for GN(~x; ~x
0) to show

that GN(~x; ~x
0) is not symmetric in general but that GN(~x; ~x

0)� F (~x) is symmetric in ~x and
~x0, where
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1.14.c

Show that the addition of F (~x) to the Green function does not a�ect the potential �(~x).
See problem 3.26 for an example of the Neumann Green function.

Note that F (~x) is independent of ~x0. Therefore:
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Therefore, the addition of F (~x) does not a�ect the fact that G(~x; ~x0) is a valid Green function.
As a result, the fact that �(~x) is a solution remains una�ected. Because �(~x) is a unique
solution, the fact that �(~x) remains a solution must mean that �(~x) remains una�ected.
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Problem 2.1

A point charge q is brought to a position a distance d away from an in�nite plane conductor
held at zero potential. Using the method of images, �nd:

2.1.a. The surface-charge density induced on the plane, and plot it
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Figure 2: Plot for problem 2.1.a.

2.1.b. The force between the plane and the charge by using Coulomb's
law of the force between the charge and its image
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2.1.c. The total force acting on the plane by integrating �2=2"0 over
the whole plane
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Convert to polar coordinates:Z
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2.1.d. The work necessary to remove the charge q from its position
to in�nity
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2.1.e. The potential energy between the charge q and its image
(compare the answer to part d and discuss)
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Part b gives the work needed to move the charge to1 and the image charge to �1. Part d
gives the work needed for the charge to swap places with its image charge. We would expect
the work needed to swap the charge and image charge to be considerably larger than the
work needed to move the charge and image charge to �1 because more work is required
when the charges are closer together.

2.1.f. Find the answer to part d in electron volts for an electron
originally one angstrom from the surface

W =
q2

16�"0d

=
e(1:6� 10�16C)
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= 3:6 KeV

1 Problem 2.2

Using the method of images, discuss the problem of a point charge q inside a hollow,
grounded, conducting sphere of inner radius a. Find:
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2.2.a. The potential inside the sphere
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2.2.b. The induced surface-charge density
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2.2.c. The magnitude and direction of the force acting on q
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2.2.d. Is there any change in the solution if the sphere is kept at a
�xed potential V ? If the sphere has a total charge Q on its inner
and outer surfaces?

Yes, there is a change in the solution. How the solution changes for these two cases is detailed
below.

1.0.1 Sphere is kept at a �xed potential V

Using superposition, we can break this down into two problems. The �rst is identical to
that which we solved above. The second is a single charge at the center of the sphere with
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a charge such that �(j~xj = a) = V . The �nal solution is found by solving for the case with
all three charges (two charges inside the sphere, one image charge outside).

1.0.2 Sphere has total charge Q on its surfaces

Again, we use superposition to break this down into two problems. And again, the �rst is
identical to that which we solved above. The second is a single charge Q at the center of the
sphere. The �nal solution is found by solving for the case with all three charges.
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