1 Problem 3.17

1.1

Equation 3.138 in Jackson:
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Substituting in the definition of the laplacian in cylindrical coordinates:
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Now, we want to show that the Green function can be expressed in the following form:
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First, we're going to confirm that this solution satisfies the above equation (that is, it’s a
valid Green function). Then, we're going to show that it is the Green function for the given
setup. Plugging in the above Green function into equation (1):
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We will need the following identities of the Dirac delta function:
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Hence, the right hand side of equation (2) becomes:
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Thus, we have two summations equal to one another. Setting their coefficients equal to one
another and canceling the exponential and sin terns from both sides of the equation:

z [ (3t (50) 0 () = (G5 ) (o) 2 ()

8
_°T5s
pL

vog (03 (<) in (F02) ) = (25 ) (Fo) Ko (F02) = =200 )

Letting » = —"7£, this becomes the Bessel equation for x # 2'. Clearly, I, (x<) K, ()

is a solution to this equation. Hence, we have shown that the proposed Green function is
indeed a valid Green function.
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To show that this is the Dirichlet Green function for the system at hand, we must show that
is zero for Z' is on the surfaces:

e The exponential function has no zeroes for finite ¢'.

e sin (”%z’) is zero at z = 0, L, as expected. Additionally, it is zero when 2’ is an integer

multiple of L, which is allowed since using the method of images would effectively gives
rise to an infinite number of surfaces at these places.

e I, has no zeroes. I,,, (m # 0) is zero only at p' = 0.

e K, has no zeroes for finite p'.

Finally, this Green function must not blow up anywhere. I,, and K, are the only functions
which blow up — they blow up at infinity and zero (respectively). However, since the argument
of I, is the lesser of p, p' and the argument of K, is the greater of p, p’ this Green function
does not blow up at all.

Hence, we have shown that this is the Green function for the system at hand.

1.2

We want to show that the following Green function also solves the same setup:
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Again, we're going to show that this Green function satisfies equation (1). Plugging it in
yields:

— [ (e pnSinh(kzo) sinh(K(L —2:)) [10 (0 ,

m=—o0

47

+ <—%m2 + k2> Jm(kp)Jm(kp’)} == 0o = )dle = )iz = )

By substituting equation (3) into the right side of the above expression, we have two sum-
mations equal to one another. Equating the terms of each summation and cancelling the
exponentials yields:
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Now, substituting the following identity into the right side of the above expression:
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we obtain two integrals equal to each other. Equating the integrands yields:
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Letting © = pk, this becomes the Bessel equation for x # z/, which is clearly solved by
T (kp) T (kp'), indicating that this function satisfies equation 1 and is a valid Green function.

Again, to show that this Green function is zero on the surfaces, we note that sinh (kz') is
zero at z = 0 while sinh (k(L — 2')) is zero at z = L. All of the functions are finite, so the
Green function does not blow up anywhere.



2 Problem 3.26

We want to show that the following is the Green function for the volume between two
concentric spheres with radii ¢ and b (where a < b):
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First, we note that the first summation is equal to ﬁ by equation 3.38 in Jackson. Hence,
the second summation must satisfy Laplace’s equation with respect to r’ (equations 1.40,
1.41 in Jackson). We know that the general solution to Laplace’s equation with azimuthal

symmetry is:
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So, we need to solve for A; and B; and show that F' is equal to the second summation in the
Green function which we’re trying to validate.

Because this is a Neumann Green function, it must satisfy the Neumann boundary conditions:
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Note that S = 47 (a® + b?), which is the total surface area of all surfaces. Since the normal
vector points away from the region of interest (and the region of interest is the area between
the spheres), n’ = —r' for ' = a and n’ = ¢/ for v = b. Also, noting that the normal
derivative of the first summation of the Green function is zero for r # ' yields the following
boundary conditions:
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The left hand sides of the above equations are summations. We’ll exploit the orthogonality
of the Legendre polynomials to simplify the computation. Because Py(cosy) = 1, these
equations become:
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Because Legendre polynomials are orthogonal, the [ = 0 term of the summation has to satisfy
the above relations by itself, meaning that the remaining terms have to be zero. That is:
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For [ > 0. Evaluating the derivatives, these equations become:
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Solving this linear equation yields:
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Plugging these terms into:

l

qi(r,r') = % + Ayt + By D (5)
>

yields the radial Green function which we’re validating (for [ > 0).

2.1

As we noted above, the | = 0 term of the summation satisfies the Neumann boundary
conditions by itself. That is:
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For [ > 0. Evaluating the derivatives, these equations become:
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The Ay term vanishes because it is multiplied by [ (and [ = 0). Solving for By is trivial:
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Plugging this into equation (5) for [ = 0 yields:
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In order for Ay(r), it must play no role in finding ® (). That is, the following must evaluate

to zero:
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Because Agy(r) does not depend on 7', we can pull it out of both integrals:
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The term in parentheses is zero by Gauss’ Law. Hence, Aq(r) may be any arbitrary function
of r, as long as it does not depend on 7.

3 Problem 3.27

Because there are no charges in this system, the first integral in equation 1.46 in Jackson is
zero. Hence:
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Using the following identity:




and the fact that Y7 0(6, ¢) = cosf, (&) becomes:
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Because F, is zero on the inner sphere, we only need to integrate over the outer sphere,
Hence, ' = b. So, were able to pull b2, g,(r,b), and Y;,,(6, ») out of the integral:
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We obtain the components of F using the definition of Vi in spherical coordinates:
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3.1

Converting ®(Z) to cylindrical coordinates:
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We obtain the components of E using the definition of Vi in cylindrical coordinates:
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