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So what’s not to like about this paper?  

}  Looks at a real problem in an important industry 
}  Variants of the problem exist in multiple industries 

}  Uses many (recent) developments in marketing science to deal 
with resource allocation in targeted settings 

}  Uses model based findings to propose a different set of x’s for 
the setting and 

}   Validates them in the field 
}  Hallmark of Misra and Nair! 

}  Has support of a corporate partner 
}  Happens less often than it should 
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More what’s not to like about this paper.. 

}  Straddles the world of academia and of practice 

}  Showcases marketing science in the world of Big Data 
}  Currently (in my opinion) marketing science is very under-represented 

}  Casino industry is highly promotion sensitive 
}  So very impressive to find 6.7% increase (R$4.57/R$68.07) or $1mm - $ 

5 mm incremental return 

}  Moral of the story – it’s all in the data generating process 
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The generic sales response model.. 

( )it it iy f x β=

Unit of aggregation i 
(account, store, territory, 

customer) 

Response Parameters 

Inference focuses on conditional model: y | x 
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And the standard solution … 

The assumption here is that marginal distribution of x 
(     ) provides no information about the response 
parameters.  

So the likelihood factors as follows  
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With no information on the level of xj, the distribution of
Gj is given by the hierarchical model Gj c N()zj, VG). Infor-
mation on the mean or level of xj implies that the restriction
keG = c holds. Therefore, we must compute Gj|E[xj] or
Gj|keG = c, where the k vector and c are as we provided pre-
viously. To compute this distribution, we consider the con-
ditional distribution of (G1, G2) given keG = c by using the
appropriate linear transformation and normal distribution
theory.

We define Ge = (Gae,Gbe ) and V = TG, where T is con-
structed as follows:

In addition, Ve = (Vae, Vbe ), Va = keG, and Vb = Gb, where
Ga = G0 and Gbe = (G1, G2). The solution to the problem of
computing Gj|keG = c is to find Vb|Va = c, which can be com-
puted from standard normal theory.

where µV = TµG, and VV = TVGTe.
To implement this approach, we use the posterior mean

of L and the sample mean of x for each of the holdout physi-
cians. We then compute the expectation of (G1j, G2j) using
Equation 16. We compare the estimates with estimates from
the conditional model that only use the information in zj.
We find an improvement in the mean square error of 4%
(29.69 versus 30.78).

Both the time-series and the cross-sectional validation
exercises provide evidence that our full modeling approach
improves prediction. Given the mature and competitive
nature of this category, the relatively weak detailing effects
in the data, and the tremendous variation in new prescrip-
tion counts, we find that the magnitude of the improvements
in prediction is significant.

A GENERAL FRAMEWORK

In the model we have presented, we use distributional
assumptions that are appropriate for the count data. This
does not limit the applicability of our approach. Our
approach is a general one that can be applied to many set-
tings in which managers strategically choose the marketing-
mix or x variables. The basic contribution is to provide a
framework for situations in which the marketing-mix vari-
ables are chosen with some knowledge of the response
parameters of the sales response equation. This applies
generically to many marketing-mix situations (see Gönül,
Kim, and Shi 2000). In this section, we develop a general
framework and discuss how other contributions in the liter-
ature can be perceived as special cases of this general
framework.

Sales response models can be viewed as particular speci-
fications of the conditional distribution of sales (y) given
the marketing-mix x.

(17) yit|xit, Git,

where i represents the individual customer/account and t
represents the time index. For example, a standard model
would be to use the log of sales or the logit of market share
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and specify a linear regression model: ln(yit) = xeitGi + Jit,
Jit ~ Normal. Here the transform of y is specified as condi-
tionally normal with sales response parameters Gi. Analysis
of Equation 17 is usually conducted under the assumption
that the marginal distribution of x is independent of the con-
ditional distribution in Equation 17. In this case, the mar-
ginal distribution of x provides no information about Gi and
the likelihood factors. If xit|V is the marginal distribution of
x, the likelihood factors are as follows:

This likelihood factorization does not occur when the
model is changed to build dependence between the mar-
ginal distribution of x and the conditional distribution.
There are many possible forms of dependence, but in the
context of sales response modeling with marketing-mix
variables, a particularly useful form is to make the marginal
distribution of x depend on the response parameters in the
conditional model. Thus, we summarize our general
approach in Equation 19:

Equation 19 is a generalization of the models that Cham-
berlain (1980, 1984) developed and Bronnenberg and
Mahajan (2001) applied in a marketing context. Chamber-
lain considers situations in which the x variables are corre-
lated to random intercepts in a variety of standard linear and
logit/probit models. Our random effects apply to all the
response model parameters and we can handle nonstandard
and nonlinear models. However, the basic results of Cham-
berlain’s model with respect to consistency of the condi-
tional modeling approach apply. Unless T increases, any
likelihood-based estimator for the conditional model will be
inconsistent. The severity of this asymptotic bias depends
on the model, data, and T. For a small T, the biases have
been documented to be large. What is not well appreciated
is that the additional structure introduced by the model for
the marginal distribution of x provides more information
about the response parameters than does the conditional
approach. That is, the levels of x are useful in making infer-
ences about the Gi parameters.

The general data-augmentation and Metropolis–Hastings
MCMC approach is ideally suited to exploit the conditional
structure of Equation 19. That is, we can alternate between
draws of Gi|Y (we recognize that the {Gi} are independent
conditional on Y and on Y|{Gi}). With some care in the
choice of the proposal density, the MCMC approach can
handle a wide range of specific distributional models for
both the conditional and the marginal distributions in Equa-
tion 19.

To specify the model in Equation 19 further, it is useful
to consider the interpretation of the parameters in the G vec-
tor. We might postulate that in the marketing-mix applica-
tion, the important quantities are the level of sales given
some “normal” settings of x (e.g., baseline sales) and the
derivative of sales with respect to various marketing-mix
variables. In many situations, decision makers set
marketing-mix variables proportional to the baseline level
of sales. More sophisticated decision makers might recog-
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With no information on the level of xj, the distribution of
Gj is given by the hierarchical model Gj c N()zj, VG). Infor-
mation on the mean or level of xj implies that the restriction
keG = c holds. Therefore, we must compute Gj|E[xj] or
Gj|keG = c, where the k vector and c are as we provided pre-
viously. To compute this distribution, we consider the con-
ditional distribution of (G1, G2) given keG = c by using the
appropriate linear transformation and normal distribution
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We define Ge = (Gae,Gbe ) and V = TG, where T is con-
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exercises provide evidence that our full modeling approach
improves prediction. Given the mature and competitive
nature of this category, the relatively weak detailing effects
in the data, and the tremendous variation in new prescrip-
tion counts, we find that the magnitude of the improvements
in prediction is significant.

A GENERAL FRAMEWORK

In the model we have presented, we use distributional
assumptions that are appropriate for the count data. This
does not limit the applicability of our approach. Our
approach is a general one that can be applied to many set-
tings in which managers strategically choose the marketing-
mix or x variables. The basic contribution is to provide a
framework for situations in which the marketing-mix vari-
ables are chosen with some knowledge of the response
parameters of the sales response equation. This applies
generically to many marketing-mix situations (see Gönül,
Kim, and Shi 2000). In this section, we develop a general
framework and discuss how other contributions in the liter-
ature can be perceived as special cases of this general
framework.

Sales response models can be viewed as particular speci-
fications of the conditional distribution of sales (y) given
the marketing-mix x.
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and specify a linear regression model: ln(yit) = xeitGi + Jit,
Jit ~ Normal. Here the transform of y is specified as condi-
tionally normal with sales response parameters Gi. Analysis
of Equation 17 is usually conducted under the assumption
that the marginal distribution of x is independent of the con-
ditional distribution in Equation 17. In this case, the mar-
ginal distribution of x provides no information about Gi and
the likelihood factors. If xit|V is the marginal distribution of
x, the likelihood factors are as follows:

This likelihood factorization does not occur when the
model is changed to build dependence between the mar-
ginal distribution of x and the conditional distribution.
There are many possible forms of dependence, but in the
context of sales response modeling with marketing-mix
variables, a particularly useful form is to make the marginal
distribution of x depend on the response parameters in the
conditional model. Thus, we summarize our general
approach in Equation 19:

Equation 19 is a generalization of the models that Cham-
berlain (1980, 1984) developed and Bronnenberg and
Mahajan (2001) applied in a marketing context. Chamber-
lain considers situations in which the x variables are corre-
lated to random intercepts in a variety of standard linear and
logit/probit models. Our random effects apply to all the
response model parameters and we can handle nonstandard
and nonlinear models. However, the basic results of Cham-
berlain’s model with respect to consistency of the condi-
tional modeling approach apply. Unless T increases, any
likelihood-based estimator for the conditional model will be
inconsistent. The severity of this asymptotic bias depends
on the model, data, and T. For a small T, the biases have
been documented to be large. What is not well appreciated
is that the additional structure introduced by the model for
the marginal distribution of x provides more information
about the response parameters than does the conditional
approach. That is, the levels of x are useful in making infer-
ences about the Gi parameters.

The general data-augmentation and Metropolis–Hastings
MCMC approach is ideally suited to exploit the conditional
structure of Equation 19. That is, we can alternate between
draws of Gi|Y (we recognize that the {Gi} are independent
conditional on Y and on Y|{Gi}). With some care in the
choice of the proposal density, the MCMC approach can
handle a wide range of specific distributional models for
both the conditional and the marginal distributions in Equa-
tion 19.

To specify the model in Equation 19 further, it is useful
to consider the interpretation of the parameters in the G vec-
tor. We might postulate that in the marketing-mix applica-
tion, the important quantities are the level of sales given
some “normal” settings of x (e.g., baseline sales) and the
derivative of sales with respect to various marketing-mix
variables. In many situations, decision makers set
marketing-mix variables proportional to the baseline level
of sales. More sophisticated decision makers might recog-
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But in data-rich settings 

}  x values often set with (partial) knowledge of response 
parameters 

}  So model needs to be modified as (Manchanda, Rossi, 
Chintagunta JMR 2004) 

 

}  This allows us to obtain unbiased parameter estimates  
}  In addition, the use of information in x about parameters can 

“sharpen” the estimates 
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the likelihood factors. If xit|V is the marginal distribution of
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ginal distribution of x and the conditional distribution.
There are many possible forms of dependence, but in the
context of sales response modeling with marketing-mix
variables, a particularly useful form is to make the marginal
distribution of x depend on the response parameters in the
conditional model. Thus, we summarize our general
approach in Equation 19:

Equation 19 is a generalization of the models that Cham-
berlain (1980, 1984) developed and Bronnenberg and
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lain considers situations in which the x variables are corre-
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response model parameters and we can handle nonstandard
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been documented to be large. What is not well appreciated
is that the additional structure introduced by the model for
the marginal distribution of x provides more information
about the response parameters than does the conditional
approach. That is, the levels of x are useful in making infer-
ences about the Gi parameters.

The general data-augmentation and Metropolis–Hastings
MCMC approach is ideally suited to exploit the conditional
structure of Equation 19. That is, we can alternate between
draws of Gi|Y (we recognize that the {Gi} are independent
conditional on Y and on Y|{Gi}). With some care in the
choice of the proposal density, the MCMC approach can
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A different solution here 

}  Two institutional features (IF) of the data used to address 
issue 
}  Value of corporate partner 

}  IF 1: The data generating process of x is known (almost 
perfectly) 

}  x are a function of past behavior (z) and demographics (d) 
}  More important, it turns out that x are not a function of 

response parameters 
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A different solution here (contd.) 

}  So, given z and d, each observation (consumer-month) can be 
assigned to segment s in a deterministic manner 
}  Assignment does not consider any unobservables so unlike scoring 

function approach 
}  Analysis is conditional on consumer belonging to segment s at time t 
}  Allows for within-consumer (time-varying) heterogeneity 

}  IF 2:  Assignment of x within segment s is randomly provided to 
a subset of consumers in s 
}  In essence, the response to x is estimated in a series of iid draws from 

within segment s 

}  Thus estimates of the response parameters for a given segment 
are unbiased 
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Assumptions and boundary conditions 

}  Assignment to segment s is based (partly) on z (past behavior) 
}  But past behavior can be a function of responsiveness to promotions (as 

they affect the propensity to visit, play, spend etc.) 
}  So is segment membership completely uncorrelated with response 

parameters? 
}  If not, then response parameters could be biased even within segment e.g., for 

heavy play segments, promotions are always high (p. 9), leading to spurious 
correlation between volume of play and promotion 

}  Random assignment within segment to conditions of no promotion 
versus promotion will “unconfound” this 
}  Will help if the authors can show these patterns in the data 
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Assumptions and boundary conditions 

}  Response parameters for segment s are invariant to who is in 
segment s 
}  In other words, if my (z, d) change and I move from s1 to s2, then I 

automatically get assigned s2’s response parameters 
}  Can we get a sense of the movement of individuals across segments? 

}  The casino industry actually tries to move you to more active (valuable) 
segments the more it knows about you 
}  So while hope is to change responsiveness, that may or may not happen  

}  The proportion of consumers assigned to a promotion within 
a segment needs to be “small” 
}  If not, then repetitions are not iid and 
}  Effects such as learning etc. can kick in, leading to non-stationary 

response parameters (within segment) 
}  Great if authors could share more data on these proportions 
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Assumptions and boundary conditions 

}  What about strategic behavior? 
}  As the authors note, customers form expectations vis-à-vis promotions/

rewards 
}  Implication is that promotions need to reach some threshold before response 

is seen i.e., response curve may be highly non-linear 
}  Does the casino company already adjust for that (while the model doesn’t)? 
}  Probably not an issue in the field experiment as it stays within range of data 

(and temporal duration of data is short) 

}  How important is the role of state-dependence? 
}  Could manifest itself in satiation, addiction etc. (Narayanan & Manchanda 

2012 QME), leading to changing promotion response over time 
}  Current approach “force-fits” this individual level evolution by moving 

him/her to “appropriate” segments over time 
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Assumptions and boundary conditions 

}  How much do other context effects matter? 
}  Within month variation (weekend, payday etc.), seasonality (Field 

Experiment in Q3) 
}  Competitive promotions 
}  Playing alone versus with others (Park & Manchanda 2014, Marketing 

Science forthcoming) 
}  …. 
}  But at this scale, average effect over segment-month (as reported here) is 

a good starting point 
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Minor quibbles and questions 

}  Nested Logit structure 
}  Does it map to consumer decision making process (even though it’s an “as-

if” model)? 
}  Are promotions seen as discrete choices or as dollar values? 
}  Can a consumer really choose from multiple promotions for a given 

property (and multiple properties) for a given month? 
}  Not possible in the field experiment (p. 31) 

}  Paper notes (p.7, p. 9) that current promotions are based on 
RFM 
}  Is that only across segments or within as well? 
}  Great if the authors could show the raw data patterns 
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Minor quibbles and questions 

Figure 4: Nesting Structure Used in Model Setup

Customer Decision process 

Do Not Visit MGM 
Property Visit Bellagio Visit MGM 

Grand Visit Aria Visit  Brand 
… 

Accept 
promo 2 

Accept 
promo 3 

Visit Bellagio 
w/o accepting 
promotion 

Accept 
promo 4 

Accept 
promo 5 

Visit MGM 
Grand w/o 
accepting 
promotion 

Accept 
promo 
6 

… 

Level 2: Visit and Brand 
Choice Decision –  
Customer decides to visit a 
specific MGM Resorts brand 
or not visit any property!

Level 1: Promotion 
Decision - Customer 
decides which 
promotion to accept 
or alternately to visit 
without accepting the 
promotion!Accept 

promo 1 

3.2 Log-linear Model of Spending

We model spending conditional on visit and property choice as a “Burr” model,

y
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In the above specification, h (.) is a function of the current and past T

⌧

trips made by the consumer
which allows for state dependence in spending. We allow h (.) to be a flexible linear function comprising
of main and interaction effects of current and past visitation behavior, promotion utilization and
demographics, indexed by the parameter vector ✓

i

. µ is a saturation parameter that puts an upper
bound on predicted spending. We set µ to be 1.5 ⇥ the maximum observed per-trip spending across
consumers. The Burr model above allows expenditure to be positive and bounded and prevents the
model from predicting unreasonably large values of spending in prediction settings. Thus, under this
model, one interprets the observed spending as a flexible fraction of the maximum spend, $µ.

We now collect the set of parameters to be estimated in ⌦
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4 Estimation

We estimate all the models presented above by maximum likelihood. Before discussing specific details,
we first discuss how we address the endogeneity concern that arises due to the history-dependent nature
of the targeting rule used by MGM under which the data were generated.

12
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Minor quibbles and questions 

}  Is this is really an application of Big Data? 
}  Is no. of segments, coefficients etc. what decides Big versus Small data? 

}  CPG firms run very large scale models at SKU level 
}  Pharma companies run large non-linear models for 1mm+ physicians 
}  Targeting here is quite macro 

¨  Segments in order of 100s – consumers in order of 1,000,000s 

}  Caveat: Big Data is like teenage sex 
}  Opportunity for authors to take a stand on definition 

}  How representative is the casino industry? 
}  15-20 year history of very detailed data collection and analytics 
}  Random assignment within segments is unusual in most other settings 
}  Highly promotion sensitive customer base 
}  Is there much more upside with respect to promotion? 
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The bigger picture 

}  Authors conclude the paper with some valuable tips on how to get 
analytics to work inside the organization 
}  Adding to that, in my experience, top management involvement is critical 
}  Would also have been nice to get some detail on the cost of data 

collection & cleaning (authors note that is a very painstaking process), 
running experiments, data analysis, optimization etc. 
}  If the time it takes to do this on a regular basis > decision-making cycle, then need 

some shortcuts 

}  The role of structure 
}  If objective is prediction (and profit), how much worse off are we running 

(model free) large scale random experiments (e.g.,  A/B testing in each 
segment)? 
}  This is especially relevant for digital businesses as cost of experimentation is low 

}  How do we foster an environment where more academic researchers 
can engage with companies at this level of rigor and relevance? 


