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Abstract

We use the Gromov-Witten/Pairs descendent correspondence for
toric 3-folds and degeneration arguments to establish the GW/P cor-
respondence for several compact Calabi-Yau 3-folds (including all CY
complete intersections in products of projective spaces). A crucial as-
pect of the proof is the study of the GW/P correspondence for descen-
dents in relative geometries. Projective bundles over surfaces relative
to a section play a special role.

The GW/P correspondence for Calabi-Yau complete intersections
provides a structure result for the Gromov-Witten invariants in a fixed
curve class. After change of variables, the Gromov-Witten series is a
rational function in the variable −q = eiu invariant under q ↔ q−1.
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0 Introduction

0.1 Overview

The main result of the paper is a proof of the Gromov-Witten/Pairs cor-
respondence for several compact Calabi-Yau 3-folds (including all Calabi-
Yau complete intersections in products of projective spaces). The Gromov-
Witten/Pairs correspondence was first stated in terms of the Donaldson-
Thomas theory of ideal sheaves in [17, 18] and is often referred to as the
MNOP conjecture.

(i) Via the Gromov-Witten theory of the moduli of stable maps to a 3-
fold X, the generating series of curve counts is defined with a genus
parameter u.

(ii) Via the Donaldson-Thomas theory of the moduli of ideal sheaves on
X, the generating series of sheaf counts is defined with an Euler char-
acteristic parameter q.
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The MNOP conjecture equates the generating series (i) and (ii) after the
non-trivial change of variables

−q = eiu .

For Calabi-Yau 3-folds, the formulation in terms of stable pairs [34] was
proven to be equivalent in [4, 40].

Our proof here uses much of the development of the Donaldson-Thomas
theory of 3-folds in the past decade. The first input is a series of papers
culminating in [21] which establish the MNOP conjecture for nonsingular,
quasi-projective, toric 3-folds. The results essentially concern the 3-fold toric
vertex (first studied in the Calabi-Yau case in [1]). The argument of [21] uses

• the proof of the MNOP conjecture for local curves established in the
papers [5, 28, 29],

• the proof of the MNOP conjecture for 3-folds An × P1, where An is
the the holomorphic symplectic resolution of the standard An - surface
singularity, in the papers [16, 19, 20].

A basic idea introduced in [21] is the notion of the capped 3-fold vertex – a
reorganization of the standard localization formula which respects the MNOP
conjecture.

The second input is the foundation of the theory of stable pairs developed
in [34, 35, 36]. Stable pairs are much better behaved than the Donaldson-
Thomas theory of ideal sheaves since there are no floating points. Real
differences between stable pairs and ideal sheaves appear in the study of
descendent invariants involving the integration of the slant products of the
Chern characters of the tautological sheaves over the moduli space. The
generating functions of descendent invariants for stable pairs are conjectured
to be rational functions (while the parallel generating functions for ideal
sheaves are known to be irrational).

The third input is the study of descendent invariants for the stable pairs
theory of 3-folds:

• the proof of the rationality of the generating series for toric 3-folds in
the papers [30, 31],

• the formulation (and proof in the toric case) of a GW/Pairs correspon-
dence for descendents in [33].
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For the toric arguments in [33], a capped 3-fold descendent vertex is intro-
duced.

Given a 3-fold X and a nonsingular divisor D ⊂ X, there are relative sta-
ble pairs and Gromov-Witten theories [13, 15, 18, 30]. The interaction of the
descendent theory with the relative theory plays a crucial role. We approach
compact Calabi-Yau 3-fold via degeneration to toric geometries. In order to
prove the GW/Pairs correspondence, we prove appropriate GW/Pairs corre-
spondence for all the simpler descendent and relative geometries which arise
in the degeneration process.

A crucial case concerns the geometry of a P1-bundle,

π : PS → S ,

over a surface S relative to a section of π. We prove GW/Pairs correspon-
dences in case S is a toric surface, a K3 surface, or a projective bundle over
a higher genus curve C. The proofs systematically use the descendent the-
ory of 3-folds. Once the GW/Pairs correspondences for these special relative
geometries are established, then the degeneration scheme of [22] can be used
to prove the GW/Pairs correspondence for any compact Calabi-Yau 3-fold
which admits a good degeneration.

0.2 Descendents in Gromov-Witten theory

Let X be a nonsingular projective 3-fold. Gromov-Witten theory is defined
via integration over the moduli space of stable maps. Let M g,r(X, β) denote
the moduli space of r-pointed stable maps from connected genus g curves to
X representing the class β ∈ H2(X,Z). Let

evi :M g,r(X, β) → X,

Li →M g,r(X, β)

denote the evaluation maps and the cotangent line bundles associated to the
marked points. Let γ1, . . . , γr ∈ H∗(X,Q), and let

ψi = c1(Li) ∈ H2(M g,n(X, β),Q).

The descendent fields, denoted by τk(γ), correspond to the classes ψk
i ev

∗
i (γ)

on the moduli space of maps. Let
≠
τk1(γ1) · · · τkr(γr)

∑
g,β

=
∫

[Mg,r(X,β)]vir

r∏

i=1

ψki
i ev∗i (γi

)
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denote the descendent Gromov-Witten invariants. Foundational aspects of
the theory are treated, for example, in [2, 3, 14].

Let C be a possibly disconnected curve with at worst nodal singulari-
ties. The genus of C is defined by 1 − χ(OC). Let M

′
g,r(X, β) denote the

moduli space of maps with possibly disconnected domain curves C of genus
g with no collapsed connected components. The latter condition requires
each connected component of C to represent a nonzero class in H2(X,Z). In
particular, C must represent a nonzero class β.

We define the descendent invariants in the disconnected case by

≠
τk1(γ1) · · · τkr(γr)

∑′
g,β

=
∫

[M
′

g,r(X,β)]vir

r∏

i=1

ψki
i ev∗i (γi).

The associated partition function is defined by1

Z′
GW

Å
X; u

∣∣∣∣
r∏

i=1

τki(γi)
ã
β
=

∑

g∈Z

≠ r∏

i=1

τki(γi)
∑′
g,β

u2g−2. (1)

Since the domain components must map nontrivially, an elementary argu-
ment shows the genus g in the sum (1) is bounded from below. The descen-
dent insertions in (1) should match the (genus independent) virtual dimen-
sion,

dim [M
′
g,r(X, β)]

vir =
∫

β
c1(TX) + r. (2)

IfX is a nonsingular projective toric 3-fold, then the descendent invariants
can be lifted to equivariant cohomology. Let

T = (C∗)3

be the 3-dimensional algebraic torus acting on X. Let s1, s2, s3 be the equiv-
ariant first Chern classes of the standard representations of the three factors
of T. The equivariant cohomology of the point is well-known to be

H∗
T
(•) = Q[s1, s2, s3] .

For equivariant classes γi ∈ H∗
T
(X,Q), the descendent invariants

≠
τk1(γ1) · · · τkr(γr)

∑′
g,β

=
∫

[M
′

g,r(X,β)]vir

r∏

i=1

ψki
i ev∗i (γi) ∈ H∗

T
(•)

1Our notation follows [21, 18] and emphasizes the role of the moduli space M
′

g,r(X,β).
The degree 0 collapsed contributions will not appear anywhere in our paper.
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are well-defined. In the equivariant setting, the descendent insertions may
exceed the virtual dimension (2). The equivariant partition function

Z′
GW

Å
X; u

∣∣∣∣
r∏

i=1

τki(γi)
ã
T

β
∈ Q[s1, s2, s3]((u))

is a Laurent series in u with coefficients in H∗
T
(•).

IfX is a nonsingular quasi-projective toric 3-fold, the equivariant Gromov-
Witten invariants of X are still well-defined2 by localization residues [5]. In
the quasi-projective case,

Z′
GW

Å
X; u

∣∣∣∣
r∏

i=1

τki(γi)
ã
T

β
∈ Q(s1, s2, s3)((u)) .

For the study of the Gromov-Witten theory of toric 3-folds, the open geome-
tries play an important role.

0.3 Descendents in the theory of stable pairs

Let X be a nonsingular projective 3-fold, and let β ∈ H2(X,Z) be a nonzero
class. We consider next the moduli space of stable pairs3

[OX
s
→ F ] ∈ Pn(X, β)

where F is a pure sheaf supported on a Cohen-Macaulay subcurve of X, s is
a morphism with 0-dimensional cokernel, and

χ(F ) = n, [F ] = β.

The space Pn(X, β) carries a virtual fundamental class obtained from the
deformation theory of complexes in the derived category [34].

Since Pn(X, β) is a fine moduli space, there exists a universal sheaf

F → X × Pn(X, β),

2A quasi-projective toric variety X has a finite skeleton of 1-dimensional projective
torus orbits. For a stable map to X to be torus fixed, the image must lie in the 1-
dimensional skeleton. Hence, the torus fixed locus of the moduli space of stable maps is
compact.

3See [34] for a foundational development. An introduction to the subject of stable pairs
can be found in [38].
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see Section 2.3 of [34]. For a stable pair [OX → F ] ∈ Pn(X, β), the restriction
of F to the fiber

X × [OX → F ] ⊂ X × Pn(X, β)

is canonically isomorphic to F . Let

πX : X × Pn(X, β) → X,

πP : X × Pn(X, β) → Pn(X, β)

be the projections onto the first and second factors. Since X is nonsingular
and F is πP -flat, F has a finite resolution by locally free sheaves.4 Hence, the
Chern character of the universal sheaf F on X×Pn(X, β) is well-defined. By
definition, the operation

πP∗

Ä
π∗
X(γ) · ch2+i(F) ∩ π

∗
P ( · )

ä
: H∗(Pn(X, β)) → H∗(Pn(X, β))

is the action of the descendent τi(γ), where γ ∈ H∗(X,Z).
For nonzero β ∈ H2(X,Z) and arbitrary γi ∈ H∗(X,Q), define the stable

pairs invariant with descendent insertions by

≠
τk1(γ1) . . . τkr(γr)

∑
n,β

=
∫

[Pn(X,β)]vir

r∏

i=1

τki(γi) .

The partition function is

ZP

Å
X; q

∣∣∣∣
r∏

i=1

τki(γi)
ã
β
=

∑

n

≠ r∏

i=1

τki(γi)
∑
n,β
qn.

Since Pn(X, β) is empty for sufficiently negative n, the partition function
is a Laurent series in q. The following conjecture was made in [35].

Conjecture 1. The partition function ZP

Ä
X; q |

∏r
i=1 τki(γi)

ä
β
is the Laurent

expansion of a rational function in q.

Let X be a nonsingular quasi-projective toric 3-fold. The stable pairs
descendent invariants can be lifted to equivariant cohomology (and defined
by residues in the open case). For equivariant classes γi ∈ H∗

T
(X,Q), we see

ZP

Å
X; q

∣∣∣∣
r∏

i=1

τki(γi)
ã
T

β
∈ Q(s1, s2, s3)((q))

4Both X and Pn(X,β) carry ample line bundles.
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is a Laurent series in q with coefficients in H∗
T
(•). A central result of [30, 31]

is the following rationality property.

Toric rationality. Let X be a nonsingular quasi-projective toric 3-fold. The
partition function

ZP

Å
X; q

∣∣∣∣
r∏

i=1

τki(γi)
ã
T

β

is the Laurent expansion in q of a rational function in the field Q(q, s1, s2, s3).

The above rationality result implies Conjecture 1 when X is a nonsingu-
lar projective toric 3-fold. The corresponding statement for the equivariant
Gromov-Witten descendent partition function is expected (from calculational
evidence) to be false.

0.4 Descendent correspondence

Let X be a nonsingular projective 3-fold. Let α̂ = (α̂1, . . . , α̂ℓ̂
) be a partition

of length ℓ̂. Let

ι∆ : ∆ → X ℓ̂

be the inclusion of the small diagonal in the product X ℓ̂. For γ ∈ H∗(X,Q),
we write

γ ·∆ = ι∆∗(γ) ∈ H∗(X ℓ̂,Q) .

By Künneth decomposition, we have

γ ·∆ =
∑

j1,...,jℓ̂

cγj1,...,jℓ̂ θj1 ⊗ . . .⊗ θj
ℓ̂
,

where {θj} is a basis of H∗(X,Q). We define the descendent insertion τα̂(γ)
by

τα̂(γ) =
∑

j1,...,jℓ̂

cγj1,...,jℓ̂ τα̂1−1(θj1) · · · τα̂
ℓ̂
−1(θjℓ̂) . (3)

Three basic examples are:

• If α̂ = (â1), then
τ( â1 )(γ) = τâ1−1(γ) .

The convention of shifting the descendent by 1 allows us to index de-
scendent insertions by standard partitions α̂. The shift by 1 is natural
from the point of view of relative/descendent correspondences and fol-
lows the notation of [33].
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• If α̂ = (â1, â2) and γ = 1 is the identity class, then

τ( â1, â2 )(1) =
∑

j1,j2

c1j1,j2τâ1−1(θj1) τâ2−1(θj2) ,

where ∆ =
∑

j1,j2 c
1
j1,j2

θj1 ⊗ θj2 is the standard Künneth decomposition
of the diagonal in X2.

• If γ is the class of a point, then

τα̂(p) = τα̂1−1(p) · · · τα̂
ℓ̂
−1(p).

By the multilinearity of descendent insertions, formula (3) does not depend
upon the basis choice {θj}.

A central result of [33] is the construction of a universal correspondence

matrix ‹K indexed by partitions α and α̂ of positive size with5

‹Kα,α̂ ∈ Q[i, c1, c2, c3]((u))

and ‹Kα,α̂ = 0 unless |α| ≥ |α̂|. Via the substitution

ci = ci(TX), (4)

the elements of ‹K act by cup product on the cohomology of X with Q[i]((u))-

coefficients. The coefficients ‹Kα,α̂ are constructed from the capped descendent
vertex [33].

The matrix ‹K is used to define a correspondence rule

τα1−1(γ1) · · · ταℓ−1(γℓ) 7→ τα1−1(γ1) · · · ταℓ−1(γℓ) . (5)

The formula for the right side of (5) requires a sum over all set partitions P
of {1, . . . , ℓ}. For such a set partition P , each element S ∈ P is a subset of
{1, . . . , ℓ}. Let αS be the associated subpartition of α, and let

γS =
∏

i∈S

γi.

In case all cohomology classes γj are even, we define the right side of (5) by

τα1−1(γ1) · · · ταℓ−1(γℓ) =
∑

P set partition of {1,...,ℓ}

∏

S∈P

∑

α̂

τα̂(
‹KαS ,α̂

· γS) . (6)

5Here, i2 = −1.
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The last sum is over all partitions α̂ of positive size, but by the vanishing

‹KαS ,α̂
= 0 unless |αS| ≥ |α̂| ,

the summation index may be restricted to partitions α̂ of positive size bounded
by |αS|.

The leading term of the descendent correspondence is calculated in [33],

τα1−1(γ1) · · · ταℓ−1(γℓ) = (iu)ℓ(α)−|α| τα1−1(γ1) · · · ταℓ−1(γℓ) + . . . .

The leading term occurs in the contribution of the maximal set partition

{1} ∪ {2} ∪ . . . ∪ {ℓ} = {1, 2, . . . , ℓ}

in ℓ parts, see [33, Section 7]. In case α = 1ℓ has all part equal to 1, the
leading term is the entire formula,

τ0(γ1) · · · τ0(γℓ) = τ0(γ1) · · · τ0(γℓ) .

In the presence of odd cohomology, a natural sign must be included in
(6). We may write set partitions P of {1, . . . , ℓ} indexing the sum on the
right side of (6) as

S1 ∪ . . . ∪ S|P | = {1, . . . , ℓ}.

The parts Si of P are unordered, but we choose an ordering for each P . We
then obtain a permutation of {1, . . . , ℓ} by moving the elements to the ordered
parts Si (and respecting the original order in each group). The permutation,
in turn, determines a sign σ(P ) determined by the anti-commutation of the
associated odd classes. We then write

τα1−1(γ1) · · · ταℓ−1(γℓ) =
∑

P set partition of {1,...,ℓ}

(−1)σ(P )
∏

Si∈P

∑

α̂

τα̂(
‹KαSi

,α̂ ·γSi
) .

The descendent τα1−1(γ1) · · · ταℓ−1(γℓ) is easily seen to have the same com-
mutation rules with respect to odd cohomology as τα1−1(γ1) · · · ταℓ−1(γℓ).

To state the descendent correspondence proposed in [33] for all nonsin-
gular projective 3-folds X, the basic degree

dβ =
∫

β
c1(X) ∈ Z

associated to the class β ∈ H2(X,Z) will be required.
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Conjecture 2. For γi ∈ H∗(X,Q), we have

(−q)−dβ/2ZP

Å
X; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
β

= (−iu)dβZ′
GW

Å
X; u

∣∣∣∣ τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
β

under the variable change −q = eiu.

By Conjecture 1, the stable pairs descendent series on the left is expected
to be a rational function in q, so the change of variables is well-defined.

If X is a nonsingular quasi-projective toric 3-fold, all terms of the de-
scendent correspondence have T-equivariant interpretations. We take the
equivariant Künneth decomposition in (3), and the equivariant Chern classes
ci(TX) with respect to the canonical T-action on TX in (4). The toric case
is proven in [33].

Toric correspondence. For γi ∈ H∗
T
(X,Q), we have

(−q)−dβ/2ZP

Å
X; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
T

β

= (−iu)dβZ′
GW

Å
X; u

∣∣∣∣ τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
T

β

under the variable change −q = eiu for all nonsingular quasi-projective toric
3-folds X.

0.5 Complete intersections

Let X be a Fano or Calabi-Yau complete intersection in a product of projec-
tive spaces,

X ⊂ Pn1 × · · · ×Pnm .

The main result of the paper is the proof of the descendent correspondence
for even classes.

Theorem 1. Let X be a Fano or Calabi-Yau complete intersection 3-fold in
a product of projective spaces, and let γi ∈ H2∗(X,Q) be even classes. Then,

ZP

Å
X; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
β

∈ Q(q) ,
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and we have the correspondence

(−q)−dβ/2ZP

Å
X; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
β

= (−iu)dβZ′
GW

Å
X; u

∣∣∣∣ τα1−1(γ1) · · · ταℓ−1(γℓ)
ã
β

under the variable change −q = eiu.

If we specialize Theorem 1 to the case where all descendents are primary
or stationary, we obtain the explicit correspondence conjectured first in [18]
for the Donaldson-Thomas theory of ideal sheaves.

Corollary 1. Let X be a Fano or Calabi-Yau complete intersection 3-fold
in a product of projective spaces, and let γi ∈ H2∗(X,Q) be even classes of
positive degree. Then,

ZP

Ñ
X; q

∣∣∣∣∣∣

r∏

i=1

τ0(γi)
s∏

j=1

τkj(p)

é

β

∈ Q(q) ,

and we have the correspondence

(−q)−dβ/2 ZP

Ñ
X; q

∣∣∣∣∣∣

r∏

i=1

τ0(γi)
s∏

j=1

τkj(p)

é

β

=

(−iu)dβ(iu)−
∑

kj Z′
GW

Ñ
X; u

∣∣∣∣∣∣

r∏

i=1

τ0(γi)
s∏

j=1

τkj(p)

é

β

under the variable change −q = eiu.

If we specialize Theorem 1 further to the Calabi-Yau case (with no de-
scendent insertions), we obtain the following result.

Corollary 2. Let X be a Calabi-Yau complete intersection 3-fold in a product
of projective spaces. Then,

ZP

Å
X; q

ã
β

∈ Q(q) ,

and we have the correspondence

ZP

Å
X; q

ã
β
= Z′

GW

Å
X; u

ã
β

under the variable change −q = eiu.
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Corollary 2 together with the DT/PT correspondence proven by Toda [40]
and Bridgeland [4] implies the original GW/DT correspondence [17] in case
X is a Calabi-Yau complete intersection in a product of projective spaces.

0.6 BPS counts

For complete intersection Calabi-Yau 3-folds, Theorem 1 is closely related to
the BPS structure conjectured by Gopakumar and Vafa [6] in 1998.

The method of [6] was to consider limits of type IIA string theory which
may be conjecturally analyzed in M-theory. A remarkable proposal was made
in [6] for the form of the Gromov-Witten potential FX of a Calabi-Yau 3-fold
X. Let

FX(u, v) =
∑

g≥0

u2g−2FX
g (v), FX

g (v) =
∑

06=β∈H2(X,Z)

NX
g,β v

β,

where NX
g,β is the (connected) genus g Gromov-Witten invariant of X in curve

class β. For each curve class β ∈ H2(X,Z) and genus g, there is conjecturally
an integer nX

g,β counting BPS states in the associated M-theory. For fixed β,
the count nX

g,β is conjectured to be nonzero for only finitely many g. The
formula predicted in [6] is:

FX(u, v) =
∑

g≥0

∑

β 6=0

nX
g,βu

2g−2
∑

d>0

1

d

Åsin(du/2)
u/2

ã2g−2

vdβ. (7)

The BPS form (7) places integrality constraints on the Gromov-Witten in-
variants.

We can uniquely define invariants nX
g,β ∈ Q by (7). Neither the integrality

nor the vanishing of nX
g,β for sufficiently high g is then clear. As a corollary

of Theorem 1, we obtain the following result.

Corollary 3. Let X be a Calabi-Yau complete intersection 3-fold in a product
of projective spaces, and let β ∈ H2(X,Z):

(i) After the variable change −q = eiu,

FX
β (q) = Coeffvβ

î
FX
ó
∈ Q(q)

is a rational function invariant under q ↔ q−1.

14



(ii) If, for all divisors β̃|β, nX
g,β̃

vanishes for all sufficiently large g, then

nX
g,β ∈ Z, ∀g ≥ 0 .

Corollary 3 follows easily from Theorem 1 and the results of Section 3 of
[34]. The rationality of part (i) is slightly weaker than the full Gopakumar-
Vafa predicted BPS form, but becomes equivalent with the vanishing assumed
in (ii). A proof of the integrality of nX

g,β has been recently claimed in [10].
The method is analytic but eventually reduces the integrality to the local
curves calculation of [5]. The vanishing (ii) is open.

0.7 Plan of the paper

We will prove Theorem 1 via the degeneration scheme established in [22].
To control the Gromov-Witten and stable pairs theories of Fano and Calabi-
Yau complete intersections in products of projective spaces, we must prove
GW/P correspondences for relative and descendent insertions in several sim-
pler geometries.

Let D ⊂ X be a nonsingular divisor in a nonsingular 3-fold X. The first
step in the proof of Theorem 1 is to formulate a GW/P descendent corre-
spondence for the relative geometry X/D. The interaction of the descendents
with the relative divisor is explained in Section 1 with a full correspondence
proposed in Conjecture 4 of Section 1.3.

The degeneration scheme of [22] requires the study of P1-bundles

π : PS → S

over surfaces S relative to a section of π where S is either

(i) a toric surface,

(ii) a K3 surface,

(iii) or a P1-bundle over a higher genus curve C.

Sections 2-6 are devoted to the proofs of descendent correspondences for the
relative surface geometries (i)-(iii).

The toric case (i) is studied in Section 2. For the K3 surface, the results
of Section 8 of [33] establish special cases. The required descendent corre-
spondence for PK3 is proven in Section 3 after the fully equivariant relative
descendent correspondence for the 3-fold cap is established.
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The technically most difficult results concern the surface geometries (iii).
We study higher genus curves by degeneration to genus 0. The method
requires establishing correspondences for special surface geometries in Section
4 and the introduction of bi-relative residue theories in Section 5. The odd
cohomology of the higher genus curves, discussed in Section 6, is controlled
by the strategy first employed in [27].

The degeneration scheme and the proof of Theorem 1 is presented in
Section 7. In fact our methods are valid in any context in which the Fano or
Calabi-Yau 3-folds can be efficiently degenerated. As an example, the GW/P
correspondence for the Enriques Calabi-Yau is discussed in Section 7.6.

The application of relative and descendent methods to the GW/P corre-
spondences for non-toric Calabi-Yau geometries has been one of the major
motivations for our work in [30, 31, 32, 33]. The recent proof [37] of the
full Katz-Klemm-Vafa conjecture for the Gromov-Witten theory of K3 sur-
faces uses the GW/P correspondences for non-toric hypersurface Calabi-Yau
3-folds established here.
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1 Relative theories

1.1 Definitions

Let X be a nonsingular 3-fold with a nonsingular divisor D ⊂ X. Rela-
tive Gromov-Witten and relative stable pairs theories enumerate curves with
specified tangency to the divisor D. See [13, 15, 18, 30] for a technical dis-
cussion of relative theories.
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In Gromov-Witten theory, relative conditions are represented by a parti-
tion µ of the integer

∫
β[D], each part µi of which is marked by a cohomology

class δi ∈ H∗(D,Z),
µ = ((µ1, δ1), . . . , (µℓ, δℓ)) . (8)

The numbers µi record the multiplicities of intersection with D while the
cohomology labels δi record where the tangency occurs. More precisely, let
M

′
g,r(X/D, β)µ be the moduli space of stable relative maps with tangency

conditions µ along D. To impose the full boundary condition, we pull-back
the classes δi via the evaluation maps

M
′
g,r(X/D, β)µ → D (9)

at the points of tangency. Also, the tangency points are considered to be
unordered.6

In the stable pairs theory, the relative moduli space admits a natural
morphism to the Hilbert scheme of d points in D,

Pn(X/D, β) → Hilb(D,
∫

β
[D]) .

Cohomology classes on Hilb(D,
∫
β[D]) may thus be pulled-back to the relative

moduli space. We will work in the Nakajima basis of H∗(Hilb(D,
∫
β[D]),Q)

indexed by a partition µ of
∫
β[D] labeled by cohomology classes of D as in

(8). For example, the class

∣∣∣µ
〉
∈ H∗(Hilb(D,

∫

β
[D]),Q) ,

with all cohomology labels equal to the identity, is
∏
µ−1
i times the Poincaré

dual of the closure of the subvariety formed by unions of schemes of length

µ1, . . . , µℓ(µ)

supported at ℓ(µ) distinct points of D.
The conjectural relative GW/P correspondence for primary fields [18]

equates the partition functions of the theories.

6The evaluation maps are well-defined only after ordering the points. We define the
theory first with ordered tangency points. The unordered theory is then defined by dividing
by the automorphisms of the cohomology weighted partition µ.
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Conjecture 3. For γi ∈ H∗(X,Q), we have

(−q)−dβ/2 ZP

Å
X/D; q

∣∣∣∣ τ0(γ1) · · · τ0(γr)
∣∣∣∣µ
ã
β
=

(−iu)dβ+ℓ(µ)−|µ| Z′
GW

Å
X/D; u

∣∣∣∣ τ0(γ1) · · · τ0(γr)
∣∣∣∣µ
ã
β
,

after the change of variables eiu = −q.

As before, ZP

(
X/D; q | τ0(γ1) · · · τ0(γr)

∣∣∣µ
)
β
is conjectured to be a ratio-

nal function of q. Conjecture 3 is made for every boundary condition (8).

1.2 Diagonal classes

To state our results for the Gromov-Witten/Pairs descendent correspondence
in the relative case, a discussion of diagonal classes is required.

For the absolute geometry X, the product Xs naturally parameterizes s
ordered (possibly coincident) points on X. For the relative geometry X/D,
the moduli space of s ordered (possibly coincident) points

(p1, . . . , ps) ∈ X/D

is a more subtle space. The points are not allowed to lie on the relative
divisor D. When the points approach D, the target X degenerates. The
resulting moduli space (X/D)s is a nonsingular variety. Let

∆rel ⊂ (X/D)s

consisting of the small diagonal where all the points pi are coincident. As a
variety, ∆rel is isomorphic to X.

The space (X/D)s is a special case of well-known constructions in relative
geometry. For example, (X/D)2 consists of 6 strata:
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1•

2•

X D

✟
✟
✟

✟

✟
✟
✟

✟

D

1•

2•

X

✟
✟
✟
✟

✟
✟
✟
✟

D

1•

2•

X

✟
✟
✟
✟

✟
✟
✟
✟

D

1•

2•

X
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✟
✟

✟
✟

✟
✟

✟
✟
✟
✟

✟
✟

✟
✟

✟
✟

D

1•

2•

X

✟
✟

✟
✟

✟
✟

✟
✟
✟
✟

✟
✟

✟
✟

✟
✟

D

2•

1•

X

As a variety, (X/D)2 is the blow-up of X2 along D2. And, ∆rel ⊂ (X/D)2 is
the strict transform of the standard diagonal.

Select a subset S of cardinality s from the r markings of the moduli
space of maps. Just as M

′
g,r(X, β) admits a canonical evaluation to Xs via

the selected markings, the moduli space M
′
g,r(X/D, β)µ admits a canonical

evaluation
evS :M

′
g,r(X/D, β)µ → (X/D)s,

well-defined by the definition of a relative stable map (the markings never
map to the relative divisor). The class

ev∗S(∆rel) ∈ H∗(M
′
g,r(X/D, β)µ)

plays a crucial role in the relative descendent correspondence.
By forgetting the relative structure, we obtain a projection

π : (X/D)s → Xs .
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The product contains the standard diagonal ∆ ⊂ Xs. However,

π∗(∆) 6= ∆rel .

The former has more components in the relative boundary if D 6= ∅.

1.3 Relative descendent correspondence

Let α̂ be a partition of length ℓ̂. Let ∆rel be the cohomology class of the

small diagonal in (X/D)ℓ̂. For a cohomology class γ of X, let

γ ·∆rel ∈ H∗((X/D)ℓ̂,Q).

We define the relative descendent insertion τα(γ) by

τα̂(γ) = ψα̂1−1
1 · · ·ψ

α̂
ℓ̂
−1

ℓ̂
· ev∗

1,...,ℓ̂
(γ ·∆rel) . (10)

In case, D = ∅, definition (10) specializes to (3).
Let ΩX [D] denote the locally free sheaf of differentials with logarithmic

poles along D. Let
TX [−D] = ΩX [D] ∨

denote the dual sheaf of tangent fields with logarithmic zeros.
For the relative geometry X/D, we let the coefficients of ‹K act on the

cohomology of X via the substitution

ci = ci(TX [−D])

instead of the substitution ci = TX used in the absolute case. Then, we
define

τα1−1(γ1) · · · ταℓ−1(γℓ) =
∑

P set partition of {1,...,l}

∏

S∈P

∑

α̂

τα̂(
‹KαS ,α̂

· γS) (11)

as before via (10) instead of (3).
Definition (11) is for even classes γi. In the presence of odd γi, a sign has

to be included exactly as in the absolute case.

Conjecture 4. For γi ∈ H∗(X,Q), we have

(−q)−dβ/2ZP

Å
X/D; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ã
β

= (−iu)dβ+ℓ(µ)−|µ|Z′
GW

Å
X/D; u

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ã
β

under the variable change −q = eiu.
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In addition, the stable pairs descendent series on the left is conjectured
to be a rational function in q, so the change of variables is well-defined.
Conjecture 4 is also well-defined in the equivariant case with respect to a
group action on X preserving the relative divisor D. Definition (10) lifts

canonically to the equivariant cohomology. The coefficients of ‹K act on the
equivariant cohomology of X via the equivariant Chern classes ci(TX [−D]).

1.4 Degeneration

There is no difficulty in proving the compatibility of Conjectures 2 and 4
with respect to the degeneration formula. In fact, both definition (10) and
the replacement of TX by TX [−D] are required for compatibility with de-
generation formula. Definition (10) canonically lifts the diagonal splittings
which occur in the correspondence for the absolute case.

The log tangent bundle arises for the following reason. Let

π : X → B

be a nonsingular 4-fold fibered over an irreducible nonsingular base curve B.
Let X be a nonsingular fiber, and let

X1 ∪D X2

be a reducible special fiber consisting of two nonsingular 3-folds intersecting
transversally along a nonsingular surfaceD. Let TX[−X1−X2] be the tangent
bundle of the total space X with logarithmic zeros along X1∪DX2. The basic
restriction property

c(TX[−X1 −X2])|Xi
= c(TXi

[−D])

holds on the special fiber. The Chern classes of the tangent bundle of a
general fiber of π therefore are extended by the Chern classes of the log
tangent bundle of the special fiber.

Since the compatibility with degeneration will play an important role in
the paper, we state the result (a formal consequence of the usual degeneration
formula in Gromov-Witten theory [12, 13]).
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Compatibility with degeneration. Let γ1, . . . , γℓ be cohomology classes
on the total space X. We have

Z′
GW

Å
X

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
ã
β
=

∑
Z′
GW

Å
X1/D

∣∣∣∣
∏

i∈I1

τai−1(γi)
∣∣∣∣ µ
ã
β1

z(µ)u2ℓ(µ)

· Z′
GW

Å
X2/D

∣∣∣∣
∏

i∈I2

τai−1(γi)
∣∣∣∣ µ

∨
ã
β2

.

The sum is over all marking distributions and curve class splittings

I1 ∪ I2 = {1, . . . , ℓ}, β = β1 + β2,

and all boundary conditions µ along D.

The boundary conditions µ are partitions weighted by elements of a fixed
basis of H∗(D,Q). The boundary condition µ∨ has the same parts as µ but
with weights given by dual elements of the dual7 basis of H∗(D,Q). The
gluing factor is defined by

z(µ) =
ℓ(µ)∏

i=1

µi · |Aut(µ)| (12)

The first factor in (12) is simply the product of the parts of µ. The second
term is the order of the symmetry group of µ as a weighted partition.

1.5 Relative results

The first results about the descendent correspondence in the relative case
concern projective bundles over a nonsingular surface S. Let

L0, L∞ → S

be two line bundles. The projective bundle8

PS = P(L0 ⊕ L∞) → S

7With respect to the intersection pairing.
8We always follow the convention of projectivization by 1-dimension subspaces.
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admits sections
Si = P(Li) ⊂ PS .

We will establish the relative descendent correspondence of Conjecture 4 for
PS/S∞ and PS/S0 ∪ S∞ when S is a toric surface.

There is a canonical C∗-action on PS by scaling the coordinates on the
P1-fibers,

ξ · [l0, l∞] = [ξl0, l∞], ξ ∈ C∗ . (13)

We denote by t the generator of the equivariant cohomology of C∗. We
will prove Conjecture 4 for PS equivariantly with respect to the fiberwise
C∗-action (13).

Theorem 2. Let S be a nonsingular projective toric surface. For classes
γi ∈ H∗

C∗(PS,Q), we have

ZP

Å
PS/S∞; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β
∈ Q(q, t)

and the correspondence

(−q)−dβ/2ZP

Å
PS/S∞; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β

= (−iu)dβ+ℓ(µ)−|µ|Z′
GW

Å
PS/S∞; u

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β

under the variable change −q = eiu.

The parallel result holds when the projective bundle geometry is taken
relative to both sections.

Theorem 3. Let S be a nonsingular projective toric surface. Consider the
relative geometry PS/S0 ∪ S∞. For γi ∈ H∗

C∗(PS,Q), we have

ZP

Å
ν

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β
∈ Q(q, t)

and the correspondence

(−q)−dβ/2ZP

Å
ν

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β

= (−iu)dβ+ℓ(ν)−|ν|+ℓ(µ)−|µ|Z′
GW

Å
ν

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β

under the variable change −q = eiu.
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Theorems 2 and 3 will be proven in Section 2. We will use the absolute
toric correspondence and the relative projective bundle geometries to prove
Theorem 1 in Section 7.

2 Proofs of Theorems 2 and 3

2.1 Conventions

Localization with respect to the fiberwise C∗-action will play a central role in
the proofs of the descendent correspondence for the relative projective bundle
geometries. We will use the localization formula for PS/S∞ in a capped form
following [21, 33]. We review the constructions here.

Since the fiberwise C∗ acts trivially on S, we have the simple characteri-
zation

H∗
C∗(S,Q) = H∗(S,Q)⊗Q Q[t] .

Via the C∗-invariant projection

π : PS → S ,

there is a canonical pull-back

π∗ : H∗
C∗(S,Q) → H∗

C∗(PS,Q) .

The localized C∗-equivariant cohomology of PS is a free module of rank
2 over the localized C∗-equivariant cohomology of S,

H∗
C∗(PS,Q) 1

t

∼
= H∗

C∗(S,Q) 1
t
· [S0] ⊕H∗

C∗(S,Q) 1
t
· [S∞]. (14)

The normal bundles of S0 and S∞ in PS are

N
∗ = L∞ ⊗ L∗

0 and N = L0 ⊗ L∗
∞

respectively. Under the isomorphism (14), we have

π∗(γ) =
γ

−t−N
[S0] +

γ

t+N
[S∞], γ ∈ H∗

C∗(S,Q) (15)

where N = c1(N) ∈ H∗(S,Q). Equation (15) is the Atiyah-Bott localization
formula for the fiberwise C∗-action on PS.
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Let L ∈ H2(S,Z) be a fixed ample polarization of S. We will measure the
S-degree of curve classes on PS via π push-forward followed by intersection
with L,

Lβ =
∫

S
L · π∗(β) .

Let [P] ∈ H2(PS,Z) be the class of a fiber of π. We have an exact sequence

0 −→ Z[P] −→ H2(PS,Z)
π∗−→ H2(S,Z) −→ 0 . (16)

The only effective curve classes with Lβ = 0 are multiples of [P].
The inclusions of S via S0 and S∞ determine two sections of the surjection

in (16). Let
Eff(S0), Eff(S∞) ⊂ H2(PS,Z)

denote the effective curve classes supported on S0 and S∞ respectively.

2.2 Log tangent bundle

The definition of the descendent correspondence

τα1−1(γ1) · · · ταℓ−1(γℓ) 7→ τα1−1(γ1) · · · ταℓ−1(γℓ)

for the relative geometry PS/S∞ requires the Chern classes of the log tangent
bundle TPS

[−S∞].
Similarly, for the relative geometry PS/S0 ∪ S∞, the Chern classes of

TPS
[−S0 − S∞] are required.

Lemma 1. The total Chern classes are

c(TPS
[−S∞]) = c(π∗TS) · (1 + [S0]) ,

c(TPS
[−S0 − S∞]) = c(π∗TS)

in the C∗-equivariant cohomology of PS for the fiberwise action.

In both cases, the restriction of the Chern classes to S∞ involves only
classes pulled-back from S via π. We leave the elementary derivation of
Lemma 1 to the reader.
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2.3 Capped localization

2.3.1 Capping over S0

Let Pn(PS/S∞, β)µ be the moduli space of stable pairs9 with boundary con-
dition given by µ. Let α be a partition of positive size, and let

Γ = (γ1, . . . , γℓ), γi ∈ H∗(S,Q)

be a vector of cohomology classes. Let

τα(Γ0) = τα1−1(γ1[S0]) . . . ταℓ−1(γℓ[S0])

be the associated descendent insertion over S0. We can study the partition
functions ∑

n

qn
∫

[Pn(PS/S∞,β)µ]vir
τα(Γ0), (17)

∑

g

u2g−2
∫

[M
′

g,⋆(PS/S∞,β)µ]vir
τα(Γ0)

via localization with respect to the fiberwise C∗-action. Recall, τα(Γ0) is
defined by (11) and is a sum of terms. For the stable maps moduli space, the
number of markings depends upon the summand of τα(Γ0), and is denoted
by ⋆.

The stable pairs capped descendent over S0 is a sum of particular local-
ization contributions to (17). Let

Un,β,µ ⊂ Pn(PS/S∞, β)µ

be the open locus corresponding to stable pairs which do not carry com-
ponents of positive S-degree in the rubber over S∞. The open set Un,β,µ is
C∗-invariant and has compact C∗-fixed locus. Indeed, the fixed locus

UC∗

n,β,µ ⊂ Un,β,µ

9The moduli space Pn(PS/S∞, β)µ ⊂ Pn(PS/S∞, β) is defined the as the inverse image,

via the boundary evalution, of a cycle V
ι
→֒ Hilb(S∞) representing the class µ. The virtual

class of Pn(PS/S∞, β)µ is defined by refined intersection

[Pn(PS/S∞, β)µ]
vir = ι![Pn(PS/S∞, β)]vir ,

using the nonsingularity of Hilb(S∞). For a representative cycle, Nakajima’s construction
may be used.
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consists precisely of the C∗-fixed loci of Pn(PS/S∞, β)µ with no components
of positive S-degree in the rubber over S∞. Unless the curve class β is of the
form

β = β0 + |µ|[P], β0 ∈ Eff(S0), (18)

the open set Un,β,µ is empty. The stable pairs capped descendent over S0 is

CP
0 (τα(Γ0), β)µ =

∑

n

qn
∫

[Un,β,µ]vir
τα(Γ0) ∈ Q[t,

1

t
]((q)), (19)

well-defined by C∗-residues.10 If condition (18) is not satisfied, CP
0 (τα(Γ0), β)µ

vanishes.
For Gromov-Witten theory, we consider the parallel open set

‹Ug,β,µ ⊂M
′
g,⋆(PS/S∞, β)µ

corresponding to stable maps which do not carry curves of positive S-degree
in the rubber over S∞. The open set ‹Ug,β,µ is C∗-invariant and has compact
C∗-fixed locus. We again define the Gromov-Witten capped descendent over
S0 via C∗-residues,

CGW
0

Å
τα(Γ0), β

ã
µ
=

∑

g

u2g−2
∫

[Ũg,β,µ]vir
τα(Γ0) ∈ Q[t,

1

t
]((u)). (20)

The capped descendent (20) vanishes unless condition (18) is satisfied.

2.3.2 Capping over S∞

We can similarly define the capped contribution over S∞. Let

τα̂(Γ̂∞) = τα̂1−1(γ̂1[S∞]) . . . τα̂ℓ−1(γ̂ℓ[S∞]) .

10We have presented the definition of the stable pairs capped descendent CP
0 (τα(Γ0), β)µ

to parallel as closely as possible the definition of the Gromov-Witten capped descendent
C
GW
0 (τα(Γ0), β)µ. Instead of considering Pn(PS/S∞, β)µ as a space (after a fixed repre-

sentative of the Nakajima basis element |µ〉 is chosen), we could alternatively arrive at the
same definition of CP

0 (τα(Γ0), β)µ via the C∗-residue

C
P
0 (τα(Γ0), β)µ =

∑

n

qn
∫

[Un,β ]vir

τα(Γ0) ∪ ev∗(µ) ,

where Un,β ⊂ Pn(PS/S∞, β) is the open locus corresponding to stable pairs which do not

carry components of positive S-degree in the rubber over S∞ and ev is the boundary map
to the Hilbert scheme of points of S∞.
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Consider the integrals

∑

n

qn
∫

[Pn(PS/S0∪S∞,β)ν,µ]vir
τα̂(Γ̂∞) (21)

∑

g

u2g−2
∫

[M
′

g,⋆(PS/S0∪S∞,β)ν,µ]vir
τα̂(Γ̂∞)

via localization with respect to the fiberwise C∗-action.
The stable pairs capped descendent over S∞ is again a sum of particular

localization contributions to (21). Let

Wn,β,ν,µ ⊂ Pn(PS/S0 ∪ S∞, β)ν,µ

be the open locus corresponding to stable maps which do not carry compo-
nents of positive S-degree in the rubber over S0. The open set Wn,β,ν,µ is
C∗-invariant and has compact C∗-fixed locus. The fixed locus

WC∗

n,β,ν,µ ⊂ Wn,β,ν,µ

consists precisely of the C∗-fixed loci of Pn(PS/S0 ∪ S∞, β)ν,µ with no com-
ponents of positive S-degree in S0. Unless the curve class β satisfies

β = |ν|[P] + β∞, β∞ ∈ Eff(S∞), (22)

the open set Wn,β,ν,µ is empty. The stable pairs capped descendent over S∞

is

CP
∞(τα̂(Γ̂∞), β)ν,µ =

∑

n

qn
∫

[Wn,β,ν,µ]vir
τα̂(Γ̂∞) ∈ Q[t,

1

t
]((q)) (23)

well-defined by C∗-residues. The capped descendent (23) vanishes unless
condition (22) is satisfied.

For Gromov-Witten theory, we consider the parallel open set

›Wg,β,ν,µ ⊂M
′
g,⋆(PS/S0 ∪ S∞, β)ν,µ

corresponding to stable maps which do not carry curves of positive S-degree
in the rubber over S0. The open set ›Wg,β,ν,µ is C∗-invariant and has compact
C∗-fixed locus. We define the Gromov-Witten capped descendent over S∞

via C∗-residues,

CGW
∞

Å
τα̂(Γ̂∞), β

ã
ν,µ

=
∑

g

u2g−2
∫

[‹Wg,β,ν,µ]vir
τα̂(Γ̂∞) ∈ Q[t,

1

t
]((u)). (24)

The capped descendent (24) vanishes unless condition (22) is satisfied.
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2.3.3 Capped localization formula

Let Φ = (φ1, . . . , φf ) be a graded basis of H∗(S,Q), and let φ∨
1 , . . . , φ

∨
f be

the dual basis satisfying ∫

S
φi · φ

∨
j = δij .

We take the cohomological weights of the relative boundary condition µ to
lie in the basis Φ. Let µ∨ then denote the boundary condition obtained by
replacing each φi by the Poincaré dual class φ∨

i .
Let β ∈ H2(PS,Z) be a curve class. A splitting of β of type d ≥ 0 is a

pair of curve classes β0, β∞ of PS satisfying

β0 ∈ Eff(S0), β∞ ∈ Eff(S∞), and β0 + d[P] + β∞ = β.

We will often denote the type of a splitting by

β = β0 + d[P] + β∞ .

A given β ∈ H2(PS,Z) admits only finitely many such splittings.
The capped localization formula for PS/S∞ is is easy to state in terms

of the capped descendents over S0 and S∞. First consider the stable pairs
partition function11

ZP
β,µ

Ä
τα(Γ0) · τα̂(Γ̂∞)

äC∗

=
∑

n

qn
∫

[Pn(PS/S∞,β)µ]vir

∏

i

ταi−1(γi[S0]) ·
∏

j

τα̂j−1(γ̂j[S∞]).

The capped localization formula is

ZP
β,µ

Ä
τα(Γ0) · τα̂(Γ̂∞)

äC∗

=

∑
CP
0 (τα(Γ0), β0 + d[P])ν

(−1)|ν|−ℓ(ν)z(ν)

q|ν|
CP
∞(τα̂(Γ̂∞), d[P] + β∞)ν∨,µ).

The sum on the right side is the triple sum

∑

d≥0

∑

β0+d[P]+β∞=β

∑

|ν|=d

.

11We depart slightly from the notation of the Introduction for more efficient presentation
of the data.

30



The gluing factor z(ν) is defined by (12).
The parallel partition function12 in Gromov-Witten theory is

Z′GW
β,µ

Å
τα(Γ0) · τα̂(Γ̂∞)

ãC∗

=

∑

g

u2g−2
∫

[M
′

g,⋆(PS/S∞,β)µ]vir

∏

i

ταi−1(γi[S0]) ·
∏

j

τα̂j−1(γ̂j[S∞]),

and the capped localization formula is

Z′GW
β,µ

Å
τα(Γ0) · τα̂(Γ̂∞)

ãC∗

=

CGW
0

Å
τα(Γ0), β0 + d[P]

ã
ν
z(ν) u2ℓ(ν) CGW

∞

Å
τα̂(Γ̂∞), d[P] + β∞

ã
ν∨,µ

,

where again the sum on the right is the triple sum

∑

d≥0

∑

β0+d[P]+β∞=β

∑

|ν|=d

.

The idea of capping localization contributions has been used extensively
in [21, 33]. The main properties are the following:

• By definition, the capped contributions differ from the bare residue
contributions by just edge contributions and 1-legged S-degree 0 con-
tributions on the far vertex.

• The capped localization formula is obtained from the standard local-
ization formula by redistributing edge and 1-legged S-degree 0 contri-
butions (no new geometric derivation is required).

• The capped contributions, unlike the bare contributions, are conjec-
tured to have well-behaved rationality and GW/P correspondence prop-
erties.

12Since S0 and S∞ are disjoint, we have

τα(Γ0) · τα̂(Γ̂∞) = τα(Γ0) · τα̂(Γ̂∞)

by definition (11).
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2.3.4 Capped edge

In the capped localization formulas of [21, 33], capped edge terms appear:

ZP
d,ν,µ =

∑

n

qn
∫

[Pn(PS/S0∪S∞,d[P])µ]vir
1 ,

Z′GW
d,ν,µ =

∑

g

u2g−2
∫

[Mg(PS/S0∪S∞,d[P])µ]vir
1

where d = |ν| = |µ|. By the following result, the capped edges here are
trivial, and hence need not be included in the capped localization formulas
in our geometry.

Lemma 2. We have the evaluations

ZP
d,ν,µ∨ = δν,µ

(−1)|ν|−ℓ(ν)

z(ν)
qd

Z′GW
d,ν,µ∨ = δν,µ

1

z(ν)
u−2ℓ(ν) .

Proof. We use the standard degeneration of PS/S0 ∪ S∞ to

PS/S0 ∪ S∞ ∪ PS/S0 ∪ S∞ .

For the stable pairs, the degeneration formula for the capped edges is

ZP
d,ν,µ∨ =

∑

λ

ZP
d,ν,λ∨ (−1)|λ|−ℓ(λ) z(λ) q−|λ| ZP

d,λ,µ∨ .

The capped edge evaluation follows immediately. A parallel argument is valid
in Gromov-Witten theory.

2.4 Proof of Theorem 2

2.4.1 Correspondence over S0

We will use the capped localization formulas together with C∗-equivariant
descendent correspondences for the capped contributions over S0 and S∞ to
prove Theorem 2.

To study the contributions over S0, we require the full torus action. Since
S is a toric surface, a 2-dimension torus T acts on S. We lift T to the line
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bundles L0 and L1. Let T be the full 3-dimensional torus acting on the
relative geometry PS/S∞,

T = T × C∗,

where the second factor is the fiberwise C∗.
The capped contribution over S0 is not difficult to understand. The open

sets
Un,β,µ ⊂ Pn(PS/S∞, β)µ, ‹Ug,β,µ ⊂M

′
g,⋆(PS/S∞, β)µ (25)

after localization with respect to the T-action yield only the standard capped
descendent vertices at the T -fixed points of S0.

We consider capped contributions over S0 in curve class

β = β0 + d[P], β0 ∈ Eff(S0).

Let µ be a boundary condition along S∞ with |µ| = d.

Proposition 3. The C∗-equivariant descendent correspondence for the capped
contributions over S0 holds. We have CP

0 (τα(Γ0), β)µ ∈ Q(q, t) and

(−q)−dβ/2 CP
0 (τα(Γ0), β)µ = (−iu)dβ+ℓ(µ)−|µ| CGW

0

Å
τα(Γ0), β

ã
µ

under the variable change −q = eiu.

Proof. We apply T-equivariant localization to the open sets (25) to express
capped contributions in terms of descendent vertices [33]. We then apply the
GW/P correspondence established in Theorem 8 of [33]. Since the C∗-fixed
locus is compact (for the fiberwise C∗-action), we may set the equivariant
parameters of T to 0.

2.4.2 Correspondence over S∞

The next step is to prove a descendent correspondence for the capped con-
tributions over S∞. Consider capped contributions over S∞ in curve class

β = d[P] + β∞, β∞ ∈ Eff(S∞).

Let ν, µ be boundary conditions along S0 and S∞ with |ν| = d.
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Proposition 4. The C∗-equivariant descendent correspondence for the capped
contributions over S∞ holds. We have CP

∞

Ä
τα̂(Γ̂∞), β

ä
ν,µ

∈ Q(q, s) and

(−q)−dβ/2 CP
∞

Ä
τα̂(Γ̂∞), β

ä
ν,µ

= (−iu)dβ+ℓ(ν)−|ν|+ℓ(µ)−|µ| CGW
∞

Å
τα̂(Γ̂∞), β

ã
ν,µ

under the variable change −q = eiu.

Theorem 2 is an immediate consequence of Propositions 3 and 4 and the
capped localization formulas for PS/S∞. Proposition 4 is harder to prove
than Proposition 3 because of the possibility of curves of positive S-degree in
the rubber over S∞. The GW/P correspondence for the descendent vertex
[33] does not directly apply. The proof of Proposition 4 is given in Sections
2.4.3 - 2.4.6.

2.4.3 Induction strategy

If β is not an effective curve class, both capped descendent contributions over
S∞ vanish and Proposition 4 is trivial.

We will prove Proposition 4 for effective curve classes by induction on Lβ

and the length ℓ(α̂). The base case is

Lβ = 0 and ℓ(α̂) = 0 .

If Lβ = 0, then β∞ = 0. If ℓ(α̂) is also 0, the capped contribution over S∞

is equal to the capped edge term determined by Lemma 2. Proposition 4 for
β∞ = 0 and ℓ(α̂) = 0 is then easily seen to hold.

Consider capped contributions over S∞ in curve class

β = d[P] + β∞, β∞ ∈ Eff(S∞).

Let ν and µ be relative conditions along S0 and S∞ with |ν| = d. We take
the cohomology weights of ν and µ to lie in the basis

Φ = (φ1, . . . , φf )

of H∗(S,Q). Let deg(ν) and deg(µ) be the sum of the (complex) degrees13

of the cohomology weights of ν and µ respectively. The codimensions of the
relative conditions ν and µ are

θ(ν) = |ν| − ℓ(ν) + deg(ν) and θ(µ) = |µ| − ℓ(µ) + deg(µ) .

13We will always use the complex grading (which is 1
2 of the real grading).
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For the vector Γ̂ = (γ̂1, . . . , γ̂ℓ) associated to the descendent insertion,
define14

deg(Γ̂) =
1

2

ℓ∑

i=1

deg(γ̂i), γ̂i ∈ Hdeg(γ̂i)(S,Q) . (26)

The maximum value of deg(Γ̂) is 2ℓ.
We will prove Proposition 4 for the capped contributions

CP
∞(τα̂(Γ̂∞), β)ν,µ, CGW

∞

Å
τα̂(Γ̂∞), β

ã
ν,µ

. (27)

By induction, we assume Proposition 4 has been established for all capped
contributions

CP
∞(τα′(Γ′

∞), β′)ν′,µ′ , CGW
∞

Å
τα′(Γ′

∞), β′
ã
ν′,µ′

satisfying at least 1 of the following 4 conditions:

• Lβ′ < Lβ ,

• Lβ′ = Lβ and ℓ(α′) < ℓ(α̂),

• Lβ′ = Lβ, ℓ(α
′) = ℓ(α̂), and deg(Γ′) > deg(Γ̂),

• Lβ′ = Lβ, ℓ(α
′) < ℓ(α̂), deg(Γ′) = deg(Γ̂), and θ(ν ′) < θ(ν).

Via the third condition, we include a reverse induction over deg(Γ̂). Since
deg(Γ̂) ≤ 2ℓ, the reverse induction is possible.

The proof of the induction step requires the C∗-localization formula for
the capped descendent contributions over S∞ in terms of rubber moduli
spaces. A review of the basic facts is presented in Sections 2.4.4 and 2.4.5.

2.4.4 Rubber geometry

The capped contributions (27) over S∞ are defined via C∗-residues. The
C∗-localization formula for the capped contributions has three parts:

(i) rubber integrals over S0,

(ii) edge terms,

14Again, we use the complex grading.
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(iii) rubber integrals over S∞.

The edge terms for stable pairs and stable maps are determined by Lemma
2. We discuss the rubber integrals here.

Consider first rubber15 geometry for the moduli of stable pairs. Let

Pn(PS/S0 ∪ S∞, β)
◦
ǫ,δ ⊂ Pn(P/S0 ∪ S∞, β)ǫ,δ

denote the open set with finite stabilizers for the fiberwise C∗-action and no
destabilization over S∞. The rubber moduli space,

Pn(PS/S0 ∪ S∞, β)
∼
ǫ,δ = Pn(P/S0 ∪ S∞, β)

◦
ǫ,δ / C∗,

denoted by a superscripted tilde, is determined by the (stack) quotient. The
rubber moduli space carries a virtual fundamental class,

[Pn(PS/S0 ∪ S∞, β)
∼
ǫ,δ]

vir.

The fiberwise C∗-action is lost after the quotient, the fiberwise C∗ acts triv-
ially on the rubber moduli space.

The rubber moduli space Pn(PS/S0 ∪ S∞, β)
∼
ǫ,δ carries cotangent lines

associated to S0 and S∞. A construction can be found in Section 1.5.2 of
[22]. Let

Ψ0,Ψ∞ ∈ H2(Pn(PS/S0 ∪ S∞, β)
∼
ǫ,δ,Q)

denote the associated cotangent line classes.
The C∗-localization formula for the capped descendent contribution over

S∞ for stable pairs is:

CP
∞(τα̂(Γ̂∞), β)ν,µ =

∑

|λ|=d

RP
d[P]

Å 1

−Ψ∞ − t

ã
ν,λ

(−1)|λ|−ℓ(λ)z(λ)

qd
·

RP
β

Å 1

−Ψ0 + t
·

ℓ∏

i=1

τα̂i−1

Ä
(t+N)γ̂i

äã
λ∨,µ

. (28)

Here, RP
d[P] denotes the generating series for rubber integrals over S0 ⊂ PS of

curve class d[P] with inverse normal factor16
Å

1
−Ψ∞−t

ã
. Similarly, RP

β denotes

15We follow the terminology and conventions of the rubber discussion in [30] for stable
pairs and [22] for Gromov-Witten theory.

16The normal factor is the tensor of the tangent line −Ψ∞ of the rubber moduli with
the tangent line −t on the target fiber (which is pure weight).
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the generating series of rubber integrals over S∞ ⊂ PS of curve class β with

inverse normal factor
Å

1
−Ψ0+t

ã
and descendent insertions. There are only two

virtual normal directions in the relative geometry here.
For Gromov-Witten theory, a parallel discussion yields the C∗-localization

formula:

CGW
∞

Å
τα̂(Γ̂∞), β

ã
ν,µ

=

∑

|λ|=d

R′GW
d[P]

Å 1

−Ψ∞ − t

ã
ν,λ

z(λ)u2ℓ(λ) ·

R′GW
β

Å 1

−Ψ0 + t
·

ℓ∏

i=1

τα̂i−1

Ä
(t+N)γ̂i

äã
λ∨,µ

. (29)

2.4.5 Virtual dimensions

The virtual dimensions of the stable pairs and stable map spaces are

dim [Pn(PS/S0 ∪ S∞, β)ν,µ]
vir = dβ − θ(ν)− θ(µ) ,

dim [M
′
g,ℓ(PS/S∞, β)ν,µ]

vir = dβ + ℓ− θ(ν)− θ(µ) .

The virtual dimensions of the rubber moduli space are 1 less,

dim [Pn(PS/S0 ∪ S∞, β)
∼
ν,µ]

vir = dβ − θ(ν)− θ(µ)− 1 ,

dim [M
′
g,ℓ(PS/S∞, β)

∼
ν,µ]

vir = dβ + ℓ− θ(ν)− θ(µ)− 1 .

2.4.6 Proof of the induction step

We return to the proof of Proposition 4 via the induction strategy of Section
2.4.3. We must prove the descendent correspondence for the capped contri-
butions (27) assuming the induction hypothesis. The analysis divides into
two cases.

Case I. |α̂| − 2ℓ(α̂) + deg(Γ̂) ≥ dβ − θ(ν)− θ(µ)

Under the hypothesis of Case I, we will prove the vanishing of both sides
of the descendent correspondence of Proposition 4 for capped contributions
over S∞ by a straightforward dimension analysis.
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First, consider the moduli space of stable pairs. Formula (28) expresses

CP
∞ (τα(Γ∞), β)ν,µ , β = d[P] + β∞

in terms of integrals over rubber moduli spaces. The rubber over S0 carries
curve classes with S-degree 0. In formula (28), if

θ(ν) + θ(λ) > 2d,

then the rubber integrals over S0 vanish (since the the virtual dimension17

of the rubber moduli spaces over S0 is 2d− 1). Therefore,

θ(λ∨) ≥ θ(ν) .

As a consequence, the virtual dimensions of the rubber moduli spaces over
S∞ in (28) never exceed

dβ − θ(ν)− θ(µ)− 1 .

The dimension of the integrand on the rubber of ∞ is at least the dimension
of

dim
Å ℓ∏

i=1

τα̂i−1

Ä
γ̂i
äã

= |α̂| − 2ℓ(α̂) + deg(Γ̂) > dβ − θ(ν)− θ(µ)− 1 ,

where the inequality is by the hypothesis of Case I. We conclude every rubber
integral18 over S∞ in (28) vanishes and hence

CP
∞

Ä
τα̂(Γ̂∞), β

ä
ν,µ

= 0 .

The argument for the vanishing of CGW
∞

Å
τα̂(Γ̂∞), β

ã
ν,µ

is identical. We use

the compatibility of the correspondence with grading established in Proposi-
tion 24 of [33] and the identification of the log tangent bundle of Lemma 1.
Degree can be interchanged between the cotangent lines and Chern class of
TPS

(−S0 − S∞). However, since

c(TPS
[−S0 − S∞]) = c(π∗TS),

17The leading q term of RP
d[P]

(
1

−Ψ∞+t

)
ν,λ

, given by the intersection pairing between ν

and λ, is degenerate.
18All the rubber integrals are non-equivariant (there is no C∗-action). For a nonvanishing

result, the integrand can not exceed the virtual dimension.
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the dimension calculus for the vanishing remains unchanged. We conclude

CGW
∞

Å
τα̂(Γ̂∞), β

ã
ν,µ

= 0 .

Proposition 4 is established in Case I.

Case II. |α̂| − 2ℓ(α̂) + deg(Γ̂) < dβ − θ(ν)− θ(µ)

The capped contributions need not vanish under the hypothesis of Case II.
However, we will find parallel inductive relations to establish the descendent
correspondence of Proposition 4.

To each partition λ weighted by cohomology classes of S in the basis Φ,

((λ1, δ1), . . . , (λℓ(λ), δℓ(λ))) , |λ| =
ℓ(λ)∑

i=1

λi, δi ∈ Φ , (30)

we associate a descendent insertion over S0,

τ [λ] = τλ1−1(δ1[S0]) · · · τλℓ(λ)−1(δℓ(λ)[S0]) .

The dimension of the descendent insertion τ [λ] equals θ(λ).
Let Λν be the set of cohomology weighted partitions (30) defined by

Λν =
ß
λ

∣∣∣∣ |λ| = |ν|, θ(λ) = θ(ν)
™
.

Since there are only finitely many partitions (30) satisfying |λ| = |ν|, the set
Λν is finite.

For each cohomology weighted partition λ ∈ Λν , consider the stable pairs
and Gromov-Witten generating series

ZP
β,µ

Ä
τ [λ] · τα̂(Γ̂Id)

äC∗

=
∑

n

qn
∫

[Pn(PS/S∞,β)µ]vir

∏

i

τλi−1(δi[S0]) ·
∏

j

τα̂j−1(γ̂j). (31)

Z′GW
β,µ

Å
τ [λ] · τα̂(Γ̂Id)

ãC∗

=

∑

g

u2g−2
∫

[M
′

g,⋆(PS/S∞,β)µ]vir

∏

i

τλi−1(δi[S0]) ·
∏

j

τα̂j−1(γ̂j).
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The dimension of the integrand in for the stable pair series (31) is

θ(ν) + |α̂| − 2ℓ(α̂) + deg(Γ̂),

and the dimension of the moduli space of stable pairs is dβ − θ(µ). By
the hypothesis of Case II, the integrand dimension is strictly less than the
dimension of the moduli space. By compactness of the geometry, the series
(31) vanishes identically,

ZP
β,µ

Ä
τ [λ] · τα̂(Γ̂Id)

äC∗

= 0 . (32)

An identical dimension count shows

Z′GW
β,µ

Å
τ [λ] · τα̂(Γ̂Id)

ãC∗

= 0 . (33)

The relations (32)-(33) will be used to uniquely determine the capped con-
tributions

CP
∞

Ä
τα̂(Γ̂∞), β

ä
ν,µ
, CGW

∞

Å
τα̂(Γ̂∞), β

ã
ν,µ
, β = d[P] + β∞ . (34)

Moreover, the determinations will be sufficiently compatible to prove the
correspondence of Proposition 4 for (34).

We will expand relations (32)-(33) using the capped localization formula.
First, we write

τα̂j−1(γ̂j) = τα̂j−1

Ç
γ̂j

−t−N
[S0]

å
+ τα̂j−1

Ç
γ̂j

t+N
[S∞]

å
(35)

using the basic identity (15). We have already proven the descendent corre-
spondence for almost all the terms of the parallel capped localization formulas
for (32)-(33). The correspondence is proven for all the capped contributions
over S0 by Proposition 3. Also, the correspondence is proven for all the
capped contributions over S∞ which are covered by the induction hypothesis
of Section 2.4.3. We can write

0 =
∑

|ρ|=d

CP
0 (τ [λ], d[P])ρ

(−1)|ρ|−ℓ(ρ)z(ρ)

q|ρ|

Ç
1

t

åℓ(α̂)

CP
∞(τα̂(Γ̂∞), β)ρ∨,µ) + . . . ,

0 =
∑

|ρ|=d

CGW
0 (τ [λ], d[P])ρ z(ρ)u2ℓ(ρ)

Ç
1

t

åℓ(α̂)

CGW
∞ (τα̂(Γ̂∞), β)ρ∨,µ) + . . . ,

where the sums are over all cohomology weighted partitions ρ of d. The dots
stand for terms covered by the first 3 inductive conditions:
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• lower S-degree over S∞,

• fewer descendent insertions over S∞,

• higher descendent degree over S∞.

The induction condition over descendent degree is used to replace

γ̂j
t+N

=
γ̂j
t
−
γ̂jN

t2
+
γ̂jN

2

t3

by the leading term (note N3 = 0 in H∗(S,Q)).
Using the 4th induction condition, the relations can be simplified further.

The capped contributions over S0,

CP
0 (τ [λ], d[P])ρ, CGW

0 (τ [λ], d[P])ρ

have curve class of S-degree 0. Hence, the capped contributions equal the
full stable pairs and Gromov-Witten partition functions

CP
0 (τ [λ], d[P])ρ = ZP

d[P],ρ(τ [λ])
C∗

,

CGW
0 (τ [λ], d[P])ρ = Z′GW

d[P],ρ(τ [λ])
C∗

,

Since the moduli space Pn(PS, d[P])ρ has virtual dimension 2d−θ(ρ), we see
only terms with

θ(λ) + θ(ρ) ≥ 2d

occur in the stable pairs relation. A parallel dimension count yields the same
conclusion on the Gromov-Witten side. When the inequality is strict, we
have

θ(λ) + θ(ρ) > 2d =⇒ θ(ρ∨) < θ(λ) = θ(ν),

so the terms are covered by the 4th induction condition.
The final forms we find for the principal terms on the right side of the

relations (32)-(33) are the following:

∑

|ρ|=d, θ(ρ)=θ(ν∨)

CP
0 (τ [λ], d[P])ρ

(−1)|ρ|−ℓ(ρ)z(ρ)

q|ρ|

Ç
1

t

åℓ(α̂)

CP
∞(τα̂(Γ̂∞), β)ρ∨,µ)+. . . ,

∑

|ρ|=d, θ(ρ)=θ(ν∨)

CGW
0 (τ [λ], d[P])ρ z(ρ)u2ℓ(ρ)

Ç
1

t

åℓ(α̂)

CGW
∞ (τα̂(Γ̂∞), β)ρ∨,µ) + . . . ,
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The capped contributions

CP
∞(τα̂(Γ̂∞), β)ρ∨,µ), CGW

∞ (τα̂(Γ̂∞), β)ρ∨,µ)

as ρ varies yield exactly |Λν | unknowns. As λ varies, we obtain exactly |Λν |
equations. The coefficients of the system are nonsingular by Proposition 6 of
[31] on the stable pairs side (and therefore also on the Gromov-Witten side by
Proposition 3). Hence, the relations uniquely determine all the unknowns in-
cluding (34). Since the descendent correspondences have already been proven
for all of the terms besides the unknowns, we conclude Proposition 4 holds
for (34). The induction step has been established.

2.5 Proof of Theorem 3

The capped localization formulas for stable pairs and stable maps for the
relative geometry PS/S0 ∪ S∞ have contributions over S0 and S∞. Both
take the form of the capped contributions over S∞ for the relative geome-
try PS/S∞. Hence, both are covered by the descendent correspondence of
Proposition 4. Theorem 3 follows immediately.

2.6 Non-toric surfaces

Let S be a nonsingular projective surface (not necessarily toric) with line
bundles

L0, L∞ → S .

As a consequence of Conjecture 2, Theorems 2 and 3 should hold for non-toric
S exactly as stated.

In fact, our proofs of Theorems 2 and 3 are valid for any nonsingular
projective surface S for which Proposition 3, concerning the correspondence
for capped descendent contributions of PS/S∞ over S0, holds. The toric
hypothesis for S was only used to establish Proposition 3 via the descendent
correspondence of [33] for capped vertices in toric geometry.

In order to prove Theorem 1, we will require Theorem 2 for particular
non-toric surfaces. Let

ǫ : S → C

be a surface S expressed as a P1-bundle over a curve of genus g. Let

LC
0 , L

C
∞ → C
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be line bundles. We will prove Proposition 3 for S and the line bundles

ǫ∗LC
0 , ǫ

∗LC
∞ → S (36)

in Section 6. As a consequence, Theorem 2 will also hold for the geometry
determined by the data (36).

In the proof of Theorem 1, K3 surfaces will also appear. A special case
of Theorem 2 for K3 surfaces S (in the non-equivariant limit) has been
established in Proposition 26 of [33]. In Proposition 10 of Section 3.8, we
will prove the results we require for K3 surfaces.

3 Descendent correspondence for the cap

3.1 Overview

The 1-leg cap is the total space of the trivial bundle,

N = OP1 ⊕ OP1 → P1 , (37)

relative to the fiber
N∞ ⊂ N

over∞ ∈ P1. The total spaceN naturally carries an action of a 3-dimensional
torus

T = T × C∗ .

Here, T acts by scaling the factors of N and preserving the relative divisor
N∞. The C∗-action on the baseP1 which fixes the points 0,∞ ∈ P1 lifts to an
additional C∗-action on N fixing N∞. Let the tangent weights at 0,∞ ∈ P1

with respect to the last C∗-factor be −s3 and s3 respectively.19

The equivariant cohomology ring H∗
T
(•) is generated by the Chern classes

s1, s2, and s3 of the standard representation of the three C∗-factors. Following
[30], we define

ZP
d,η

Ñ
k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

écap,T

=

∑

n∈Z

qn
∫

[Pn(N/N∞,d)η ]vir

k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞]) , (38)

19The tangent weight conventions here match [30].
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by T-equivariant residues. By Theorem 3 of [30], the partition function (38)
is a Laurent series in q of a rational function20 in Q(q, s1, s2, s3). Let

Z′GW
d,η

Ñ
k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

écap,T

=

∑

g∈Z

u2g−2
∫

[M
′

g,⋆(N/N∞,d)η ]vir

k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞]) , (39)

be the parallel Gromov-Witten partition function.
Our goal here is to prove the relative descendent correspondence of Con-

jecture 4 for the fully T-equivariant partition functions (38) and (39).

Theorem 4. For the cap geometry N/N∞, we have

(−q)−dZP
d,η

Å k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

ãcap,T

= (−iu)|η|+ℓ(η)Z′GW
d,η

Å k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

ãcap,T

under the variable change −q = eiu.

The proof of Theorem 4, given in Sections 3.2 – 3.7, follows the strategy
of the proof of Theorem 3 of [33]. The main idea is to intertwine an induction
on the depth of the descendent theories with the localization formula.

3.2 T -depth

For N defined by (37), let S ⊂ N be the relative divisor associated to the
points p1, . . . , pr ∈ P1. We consider the T -equivariant stable pairs theory of
N/S with respect to the scaling action.

The T -depth m theory of N/S consists of all T -equivariant series

ZP
d,η1,...,ηr

Ñ
k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

(40)

20By Theorem 5 of [30], the poles in q of the partition function occur only at roots of
unity.
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where k′ ≤ m. Here, p ∈ H2(P1,Z) is the class of a point, and the ηi are
partitions determining the relative conditions along π−1(pi). The T -depth
m theory has at most m descendents of 1 and arbitrarily many descendents
of p in the integrand. The T -depth m theory of N/S is correspondent if
Conjecture 4 holds for all T -depth m series (40),

(−q)−dZP
d,η1,...,ηr

Ñ
k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

=

(−iu)2d+
∑

l(ℓ(ηl)−|ηl|) Z′GW
d,η1,...,ηr

Ñ
k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

The T -depth 0 theory concerns only descendents of p. By taking the
specialization s3 = 0, we have

ZP
d,η

Ñ
k∏

j=1

τij(p)

écap,T

= ZP
d,η

Ñ
k∏

j=1

τij([0])

écap,T ∣∣∣∣
s3=0

.

The parallel relation holds for Gromov-Witten theory. By the descendent
correspondence for the 1-leg capped vertex [33], we see the T -depth 0 theory
of the cap is correspondent.

Lemma 5. The T -depth 0 theory of N/S is correspondent.

Proof. By the degeneration formula, all the descendents τij(p) can be degen-
erated on to a cap. The T -depth 0 theory of the cap is correspondent. The
theories of local curves without any insertions are correspondent by [24, 29].
Hence, the result follows by the compatibility of Conjecture 4 with the de-
generation formula.

3.3 Induction I

To establish the descendent correspondence for the T -depthm theory ofN/S,
the following result is required.

Lemma 6. The descendent correspondence for the T -depth m theory of the
cap implies the descendent correspondence of the T -depth m theory of N/S.
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Proof. We must prove the descendent correspondence for the T -depth m
theories of N relative to p1, . . . , pr ∈ P1. If r = 1, the geometry is the
cap and the correspondence of the T -depth m theories is given. Assume the
correspondence holds for r. We will show the correspondence holds for r+1.

Let p(d) be the number of partitions of size d > 0. Consider the ∞×p(d)
matrix Md, indexed by monomials

L =
∏

i≥0

τi(p)
ni

in the descendents of p and partitions µ of d, with coefficient ZP
d,µ (L)

cap,T

in position (L, µ). The lowest Euler characteristic for a degree d stable pair
on the cap is d. The leading qd coefficients of Md are well-known to be of
maximal rank.21 Hence, the full matrix Md is also of maximal rank.

Consider N relative to r + 1 points in T -depth m,

ZP
d,η1,...,ηr,µ

Ñ
k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

. (41)

We will determine the series (41) from the T -depth m series relative to r
points,

ZP
d,η1,...,ηr

Ñ
L

k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

(42)

defined by all monomials L in the descendents of p.
Consider the T -equivariant degeneration of N by bubbling off a single

cap at a point not equal to p1, . . . , pr. All the descendents of p remain on the
original N in the degeneration except for those in L which distribute to the
cap. By induction on m, we need only analyze the terms of the degeneration
formula in which the descendents of 1 distribute away from the cap. Then,
since Md has full rank, the invariants (41) are determined by the invariants
(42).

The parallel inductive construction for Gromov-Witten theory determines

Z′GW
d,η1,...,ηr ,µ

Ñ
k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

(43)

21The leading qd coefficients are obtained from the Chern characters of the tautological
rank d bundle on Hilb(N∞, d). The Chern characters generate the ringH∗

T (Hilb(N∞, d),Q)
after localization as can easily be seen in the T -fixed point basis. A more refined result is
discussed in Proposition 9 of [30].
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in terms of the T -depth m series relative to r points,

Z′GW
d,η1,...,ηr

Ñ
L

k′∏

j′=1

τi′
j′
(1)

k∏

j=1

τij(p)

éN/S,T

, (44)

the T -depth m theory of the cap, and theories of lower T -depth. By the com-
patibility of the descendent correspondence with the degeneration formula,
the determinations of the T -depth m theories of N relative r + 1 points in
P1 respect the descendent correspondence.

The 1-leg tube is the total space of the trivial bundle,

N = OP1 ⊕ OP1 → P1 ,

relative to the fibers
N0, N∞ ⊂ N

over both 0,∞ ∈ P1. The tube carries a fiberwise T -action as well as a full
T-action. Lemma 6 implies the following result which will be half of our
induction argument relating the descendent theory of the cap and the tube.

Lemma 7. The descendent correspondence for the T -depth m theory of the
cap implies the descendent correspondence for the T -depth m theory of the
tube.

3.4 T-depth

The T-depth m theories of the cap consists of all the T-equivariant series

ZP
d,η

Ñ
k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

écap,T

, (45)

Z′GW
d,η

Ñ
k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

écap,T

,

where k′ ≤ m. Here, 0 ∈ P1 is the non-relative T-fixed point and ∞ ∈ P1

is the relative point. The T-depth m theory of the cap is correspondent if
Conjecture 4 holds for all depth m stable pairs and Gromov-Witten partition
functions (45).
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Lemma 8. The descendent correspondence for the T-depth m theory of the
cap implies the descendent correspondence for the T -depth m theory of the
cap.

Proof. The identity class 1 ∈ H∗
T (P

1,Z) may be expressed in terms of the
T-fixed point classes,

1 = −
[0]

s3
+

[∞]

s3
.

We can calculate at most m descendents of 1 in the T -equivariant theory via
at most m descendents of [∞] in the T-equivariant theory (followed by the
specialization s3 = 0).

3.5 Induction II

The first half of our induction argument was established in Lemma 7. The
second half relates the tube back to the cap with an increase in depth.

Lemma 9. The descendent correspondence for the the T -depth m theory of
the tube implies the descendent correspondence for the T-depth m+1 theory
of the cap.

Proof. The result follows from the T-equivariant localization formula for the
cap in terms of the T -equivariant theory of the tube (already used in [30]).
We first review the formula.

For the theory of stable pairs, consider the partition function

ZP
d,η

Ñ
k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

écap,T

. (46)

We will write the T-equivariant localization formula for (46), as a sum over
set partitions

R = (R1, R2, . . . , Rr(R)), Ri ⊂ {1, . . . , k′}

satisfying the following conditions

• Ri are nonempty and disjoint,

• R1 ∪R2 ∪ . . . ∪Rr(R) = {1, . . . , k′},
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• min{j′ ∈ Ri} > min{j′ ∈ Ri+1} .

Let mi be the minimal index in Ri. As a consequence of the third condition,
mr(R) = 1 ∈ Rr(R). The formula for the partition function (46) is

∑

R

s
k′−r(R)
3 ZP

d,η1

Ñ
k∏

j=1

τij([0])

écap,T
gη

1η̃1

qd
ZP
d,η̃1,η2

Ñ
τi′m1

(p)
∏

j′∈R∗

1

τi′
j′
(1)

étube,T

·
gη

2η̃2

qd
ZP
d,η̃2,η3

Ñ
τi′m2

(p)
∏

j′∈R∗

2

τi′
j′
(1)

étube,T

· · ·

·
gη

r η̃r

qd
ZP
d,η̃r ,η

Ñ
τi′mr

(p)
∏

j′∈R∗
r

τi′
j′
(1)

étube,T

,

where the metric term is

gηη̃ = (s1s2)
ℓ(η)(−1)|η|−ℓ(η)z(η) · δη,η̃ .

The above T-equivariant formula is proven via localization and the rubber
calculus, see Section 7.2 of [30].

For a partition function (46) of T-depth m + 1, the right side of the T-
equivariant localization formula is in terms of the T-depth 0 theory of the cap
and the T -depth m theory of the tube. Consider next the Gromov-Witten
partition function,

Z′GW
d,η

Ñ
k∏

j=1

τij([0])
k′∏

j′=1

τi′
j′
([∞])

écap,T

. (47)

The T-equivariant localization formula for (47) is

∑

R

s
k′−r(R)
3 Z′GW

d,η1

Ñ
k∏

j=1

τij([0])

écap,T

hη
1η̃1

u−2ℓ(η1)
Z′GW
d,η̃1,η2

Ñ
τi′m1

(p)
∏

j′∈R∗

1

τi′
j′
(1)

étube,T

·
hη

2η̃2

u−2ℓ(η2)
Z′GW
d,η̃2,η3

Ñ
τi′m2

(p)
∏

j′∈R∗

2

τi′
j′
(1)

étube,T

· · ·

·
hη

r η̃r

u−2ℓ(ηr)
Z′GW
d,η̃r ,η

Ñ
τi′mr

(p)
∏

j′∈R∗
r

τi′
j′
(1)

étube,T

,
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where the metric is now

hηη̃ = (s1s2)
ℓ(η)z(η) · δη,η̃ .

The proof is again via standard localization and rubber calculus.
The descendent correspondence of Conjecture 4 is formally compatible

with the above T-equivariant localization formulas. Since the right sides
concern only the T-depth 0 theory of the cap and the T -depth m theory of
the tube, Lemma 9 is an immediate consequence.

3.6 Gromov-Witten side

The stable pairs localization formula for (46) in Section 3.5 was explained
in [30]. While the Gromov-Witten side is parallel, we present the first cases
here to help the reader.

To start, we write the localization formula for T-depth 1 series for the
cap as

Z′GW
d,η

Ñ
k∏

j=1

τij([0]) · τi′1([∞])

écap,T

=

Z′GW
d,η

Ñ
k∏

j=1

τij([0]) · τi′1([∞])

écap,T

=

∑

|µ|=d

WVert
µ

Ñ
k∏

j=1

τij([0])

é
·W(0,0)

µ · Sµ
η(τi′1) ,

where the rubber term on the right is

Sµ
η(τi′1) =

∑

g

u2g−2

Æ
µ

∣∣∣∣∣
s3τi′1
s3 − ψ0

∣∣∣∣∣ η
∏∼

g,d

.

Here, WVert
µ and W0,0

µ denote the Gromov-Witten vertex and edge terms.
The rubber term simplifies via the topological recursion relation for ψ0

after writing
s3

s3 − ψ0

= 1 +
ψ0

s3 − ψ0

. (48)
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We find the relation

Sµ
η(τi′1) =

∑

|η̃|=d

S
µ
η̃ ·

hη̃η̃

u−2ℓ(η̃)
· Z′GW

d,η̃,η

Ä
τi′1([∞])

ätube,T

where the rubber term on the right is

Sµ
η =

∑

g

u2g−2

Æ
µ

∣∣∣∣∣
1

s3 − ψ0

∣∣∣∣∣ η
∏∼

g,d

.

The leading 1 on the right side of (48) corresponds to the degenerate leading
term of Sµ

η̃ . The topological recursion applied to the ψ0 prefactor of the second
term produces the rest of Sµ

η̃ . We have also used here the identification of
the log tangent bundle on the destabilized cap.

After reassembling the localization formula, we find

Z′GW
d,η

Ñ
k∏

j=1

τij([0]) · τi′1([∞])

écap,T

=

∑

|η̃|=d

Z′GW
d,η̃

Ñ
k∏

j=1

τij([0])

écap,T

·
hη̃η̃

u−2ℓ(η̃)
· Z′GW

d,η̃,η

Ä
τi′1([∞])

ätube,T

which is equivalent to the first case of the Gromov-Witten formula of Section
3.5.

The higher cases of the Gromov-Witten localization formula of Section
3.5 are proven by expanding definition (11) of the descendent correspondence
and following the rubber calculus. Consider

Z′GW
d,η

Ñ
k∏

j=1

τij([0]) · τi′1([∞])τi′2([∞])

écap,T

=

Z′GW
d,η

Ñ
k∏

j=1

τij([0]) · τi′1([∞])τi′2([∞])

écap,T

,

where we have

τi′1([∞])τi′2([∞]) = s3
∑

α

τα(K̃(i′1+1,i′2+1),α · [∞])

+
∑

δ

τδ(K̃(i′1+1),δ · [∞]) ·
∑

ǫ

τǫ(K̃(i′2+1),ǫ · [∞]) (49)
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by definition. The first summand on the right of (49) is obtained from the
set partition {1, 2} and the second term from the set partition {1} ∪ {2}.
After applying localization and the rubber calculus to the {1, 2} term, we
obtain the {1, 2} term of

∑

|η̃|=d

s3Z
′GW
d,η̃

Ñ
k∏

j=1

τij([0])

écap,T

·
hη̃η̃

u−2ℓ(η̃)
· Z′GW

d,η̃,η

Ä
τi′1(p)τi′2(1)

ätube,T
. (50)

After applying localization and the rubber calculus to the {1} ∪ {2} term of
(49), we obtain the {1} ∪ {2} term of (50) plus the full series

∑

|µ̃|,|η̃|=d

Z′GW
d,µ̃

Ñ
k∏

j=1

τij([0])

écap,T

·
hµ̃µ̃

u−2ℓ(µ̃)
· Z′GW

d,µ̃,η̃

Ä
τi′2(p)

ätube,T

·
hη̃η̃

u−2ℓ(η̃)
· Z′GW

d,η̃,η

Ä
τi′1(p)

ätube,T
. (51)

Combining (50) and (51) exactly yields the Gromov-Witten formula of Sec-
tion 3.5 for 2 insertions over ∞.

3.7 Proof of Theorem 4

Lemmas 7–9 together provide an induction which establishes the descendent
correspondence for the T-depth m theory of the cap for all m.

Since the classes of the T-fixed points 0,∞ ∈ P1 generate H∗
T
(P1,Z)

after localization, Theorem 4 is a T-equivariant correspondence for the full
descendent theory of the cap.

3.8 K3 surfaces

For a surface S, following the notation of Section 1.5, let

PS = P(L0 ⊕ L∞) → S, Si = P(Li) ⊂ PS .

Proposition 10. Let S be a nonsingular projective K3 surface. For classes
γi ∈ H∗(S,Q), we have

ZP

Å
PS/S∞; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ã
β
∈ Q(q)
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and the correspondence

(−q)−dβ/2ZP

Å
PS/S∞; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ã
β

= (−iu)dβ+ℓ(µ)−|µ|Z′
GW

Å
PS/S∞; u

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ã
β

under the variable change −q = eiu.

Proof. If the cohomology insertions γi are supported on S0, then the above
correspondence is proven in Proposition 26 of [33]. The support hypotheses
for γi were needed there since, for the T-equivariant cap, only the corre-
spondence for descendents of the non-relative point had been proven in [33].
Theorem 4 now removes the need for the support hypothesis. The proof of
Proposition 26 together with Theorem 4 yields the result.

4 The geometry P1 × C×P1 / P1 × C

4.1 Overview

Let Y denote the the quasi-projective variety P1 × C × P1. For clarity, we
will denote the first factor by P1

1 and the third factor by P1
3. Let

π1 : Y → P1
1, π3 : Y → P1

3

denote the projections onto to the first and last factors.
The variety Y admits an action of the 3-torus

T = C∗
1 × C∗

2 × C∗
3 .

The first factor C∗
1 of T acts on P1

1 with fixed points 0,∞ ∈ P1
1 with tangent

weights −s1, s1 respectively. The factor C∗
2 acts on C with fixed point 0 ∈ C

with tangent weight −s2. Finally, C
∗
3 acts on P1

3 with fixed points 0,∞ ∈ P1
3

with tangent weights −s3, s3 respectively.
Define the divisors Y0, Y∞ ⊂ Y to be the fibers of π3 over 0,∞ ∈ P1

3,

Y0 = P1
1 × C× {0}, Y∞ = P1

1 × C× {∞}.

Both Y0 and Y∞ are preserved by the T-action. Let

[0], [∞] ∈ H2
T
(Y,Q)
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denote the classes of Y0 and Y∞ respectively.
The projection π1 is equivariant with respect to the projection of T onto

C∗
1. We will view

θj, θ
′
j′ ∈ H∗

C∗

1
(P1

1,Q)

as classes in H∗
T
(Y,Q) via pull-back by π1.

Since Y∞ is preserved by the T-action, we can define

ZP
β,η

Ñ
k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

éY/Y∞,T

=

∑

n∈Z

qn
∫

[Pn(Y/Y∞,β)η ]vir

k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞]) , (52)

by T-equivariant residues. Here, β ∈ H2(Y,Z) is a curve class (specified by
degrees along the two P1-factors), and η is a boundary condition along Y∞.
The parallel Gromov-Witten partition function is

Z′GW
β,η

Ñ
k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

éY/Y∞,T

=

∑

g∈Z

u2g−2
∫

[M
′

g,⋆(Y/Y∞,β)η ]vir

k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞]) . (53)

Our goal here is to prove the relative descendent correspondence of Con-
jecture 4 for the fully T-equivariant partition functions (52) and (53).

Theorem 5. For the relative geometry Y/Y∞, we have

ZP
β,η

Å k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

ãY/Y∞,T

∈ Q(q, s1, s2, s3)

and the correspondence

(−q)−dβ/2ZP
β,η

Å k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

ãY/Y∞,T

= (−iu)dβ+ℓ(η)−|η|Z′GW
β,η

Å k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

ãY/Y∞,T

under the variable change −q = eiu.
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The proof of Theorem 5, given in Sections 4.2 – 4.4, again proceeds by
induction on the depth of the descendent theories. A study of capped rubber
for the geometry Y/Y0 ∪ Y∞ is required for the base case of the induction.

4.2 Depth induction

The proof of Theorem 4 can be exactly followed to establish Theorem 5. To
start, we define the two notions of depth for the geometry Y .

Let S ⊂ Y be the relative divisor ∪iπ
−1
3 (pi) associated to the points

p1, . . . , pr ∈ P1
3. Let

T = C∗
1 × C∗

2 ⊂ T

be the first two factors of the 3-torus. We consider the T -equivariant sta-
ble pairs theory of Y/S. The T -depth m theory of Y/S consists of all T -
equivariant series

ZP
β,η1,...,ηr

Ñ
k′∏

j′=1

τi′
j′
(θ′j′ · 1)

k∏

j=1

τij(θj · p)

éY/S,T

(54)

where k′ ≤ m. Here, p ∈ H2(Y,Z) denotes the class of a fiber of π3, and the
ηi are partitions determining the relative conditions along π−1(pi). Following
exactly the proof of Lemma 7, we obtain the following result.

Lemma 11. The descendent correspondence for the T -depth m theory of
Y/Y∞ implies the descendent correspondence for the T -depth m theory of the
Y/Y0 ∪ Y∞.

The stable T-depth m theory of Y/Y∞ consists of all the T-equivariant
series

ZP
β,η

Ñ
k∏

j=1

τij(θj[0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

éY/Y∞,T

(55)

where k′ ≤ m.
The proofs of Lemmas 8 and 9 are formal and remain valid for the the

geometry Y/Y∞. As a result, we obtain the following two results.

Lemma 12. The descendent correspondence for the T-depth m theory of
Y/Y∞ implies the descendent correspondence for the T -depth m theory of the
Y/Y∞.
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Lemma 13. The descendent correspondence for the the T -depth m theory of
the tube implies the descendent correspondence for the T-depth m+1 theory
of the cap.

Lemmas 11–13 together establish a recursion which reduces Theorem 5
to the base case of the T-depth 0 theory of Y/Y∞.

4.3 T-depth 0

The last step in the proof of Theorem 5 is to establish the descendent corre-
spondence in the base case of T-depth 0.

Proposition 14. For the relative geometry Y/Y∞, we have

ZP
β,η

Å k∏

j=1

τij(θj[0])
ãY/Y∞,T

∈ Q(q, s1, s2, s3)

and the correspondence

(−q)−dβ/2ZP
β,η

Å k∏

j=1

τij(θj[0])
ãY/Y∞,T

= (−iu)dβ+ℓ(η)−|η|Z′GW
d,η

Å k∏

j=1

τij(θj[0])
ãY/Y∞,T

under the variable change −q = eiu.

We can write the partition function for Y/Y∞ via capped localization
for both stable pairs and Gromov-Witten theory. The capped contributions
over Y0 are 2-leg capped toric descendent vertices and satisfy the descendent
correspondence by [33]. The interesting new terms in the capped localization
formula occur over Y∞ — the capped rubber contributions. The capped
rubber contributions carry no descendent insertions.

To prove the correspondence for the capped rubber contributions over
Y∞, we follow the technique developed in [21] where the capped rubber con-
tributions for

An ×P1 /An × {∞}

over ∞ were studied. Via the differential equations constructed in Sections
3.2 of [21], the analysis of Section 3.4 can be applied to our capped rubber
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contributions. The proof of Lemma 6 of [21] is valid here. As a result
the correspondence for the capped rubber contributions of Y/Y∞ over Y∞ is
equivalent to the following non-rubber correspondence.

We consider the relative geometry Y / Y0∪Y∞ with respect to the 2-torus
T -action by the first two factors T ⊂ T. Let γ ∈ H∗

C∗(P1
1,Q) be the class of

the fixed point ∞ ∈ P1
1.

Proposition 15. For the relative geometry Y/Y0 ∪ Y∞, we have

ZP
β,ν,µ

Å
τ0(γ[0])

ãY/Y0∪Y∞,T

∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP
β,ν,µ

Å
τ0(γ[0])

ãY/Y0∪Y∞,T

= (−iu)dβ+ℓ(ν)−|ν|+ℓ(µ)−|µ|Z′GW
β,ν,µ

Å
τ0(γ[0])

ãY/Y0∪Y∞,T

under the variable change −q = eiu.

By basic properties of the descendent correspondence [33],

τ0(γ[0]) = τ0(γ[0]) .

Proposition 14 is a consequence of Proposition 15 together with the recursion
of Lemmas 11 - 13. Hence the proof of Theorem 5 will be complete once
Proposition 15 is established.

4.4 Proof of Proposition 15

The curve class β ∈ H2(Y,Z) is a linear combination of the curves

[P1
1] = P1

1 × {0} × {0}, [P1
3] = {0} × {0} ×P1

3 .

If β is a multiple of [P1
3], then Proposition 15 reduces immediately to the

T -equivariant descendent correspondence of local curves [33].
Let Y = P1

1 × P1
2 × P1

3. We view the projective variety Y as a T-
equivariant compactification of the quasi-projective variety Y ,

P1
1 × C×P1

3 ⊂ P1
1 ×P1

2 ×P1
3.
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Let Y0 and Y∞ be the π3-fibers of Y over 0,∞ ∈ P1
3. Our proof of Propo-

sition 15 will be obtained from studying the partition functions

ZP
β,ν,µ

Å
τ0(γ[0])

ã
Y/Y0∪Y∞,T

, Z′GW
β,ν,µ

Å
τ0(γ[0])

ã
Y/Y0∪Y∞,T

(56)

for the compact relative geometryY/Y0∪Y∞. We will consider curve classes

β = d1[P
1
1] + d3[P

1
3] ∈ H2(Y,Z)

for which d1 > 0 and d3 ≥ 0.
If d3 > 0, the relative conditions ν and µ in (56) will be taken to be

of a special form. The relative condition ν is a partition of d3 weighted by
H∗

T (P
1
1 × P1

2,Q). We require the weights of all the parts νi to be the pull-
backs of the classes the C∗

1-fixed points 0,∞ ∈ P1
1 except for the weight of

the part ν1. For ν1, we take the weight to be the class of one of the following
T -fixed points:

(0, 0), (∞, 0) ∈ P1
1 ×P1

2 .

For µ, we require all weights to be the pull-backs of the classes of 0,∞ ∈ P1
1

The moduli space of stable pairs Pn(Y/Y0∪Y∞, β)ν,µ has virtual dimen-
sion 2d1 + 2d3 minus the constraints imposed by the boundary conditions.
The number of constraints imposed by ν is d3 +1 and by µ is d3. Hence, the
virtual dimension of the stable pairs space is

2d1 + 2d3 − 2d3 − 1 .

The integrand τ0(γ[0]) imposes another constraint, so the virtual dimension
of the integrals in the stable pairs partition function (56) is 2d1 − 2. The
parallel dimension analysis for the Gromov-Witten partition function (56)
also yields 2d1 − 2.

Lemma 16. For d3 > 0 with our special boundary conditions ν and µ, we
have

ZP
β,ν,µ

Å
τ0(γ[0])

ã
Y/Y0∪Y∞,T

∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP
β,ν,µ

Å
τ0(γ[0])

ã
Y/Y0∪Y∞,T

= (−iu)dβ+ℓ(ν)−|ν|+ℓ(µ)−|µ|Z′GW
β,ν,µ

Å
τ0(γ[0])

ã
Y/Y0∪Y∞,T

under the variable change −q = eiu.
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Proof. We can assume d1 > 0, then 2d1 − 2 ≥ 0. If 2d1 − 2 > 0, the
both the stable pairs and Gromov-Witten partition functions vanish by the
compactness of the geometry. If 2d1−2 = 0, then both partition functions are
independent of the equivariant parameters s1 and s2. The required matching
then follows from Theorem 3.

We can apply T -equivariant localization to both sides of the correspon-
dence of Lemma 16. Via the action of the second factor of T , the T -
equivariant contributions occur with P1

2 coordinate either 0 or ∞ (remember
the curve class β is degree 0 over P1

2). The localization contributions where
the entire curve β and all the boundary conditions lie over 0 ∈ P1

2 yield
22 the

residue invariants appearing in Proposition 15. All the other terms in the
localization formula can be expressed as the residue invariants of Proposition
15 (over 0 or ∞ ∈ P1

2) with lesser β. Hence the T -equivariant localization re-
lation applied to Lemma 16 reduces Proposition 15 to the case where d3 = 0.

To prove the d3 = 0 case of Proposition 15, we replace Lemma 16 with a
different partition function. Let

γ0 ∈ H∗
T (P

1
1 ×P1

2,Q)

be the class of the point (∞, 0). Alternatively, γ0 is the intersection of γ with
the divisor over 0 ∈ P1

2. Hence, γ0 restricted to P1
1 × {0} ×P1

3 is −s2γ.

Lemma 17. For d3 = 0, we have

ZP
β,∅,∅

Å
τ0(γ0[0])

ã
Y/Y0∪Y∞,T

∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP
β,∅,∅

Å
τ0(γ0[0])

ã
Y/Y0∪Y∞,T

= (−iu)dβZ′GW
β,∅,∅

Å
τ0(γ0[0])

ã
Y/Y0∪Y∞,T

under the variable change −q = eiu.

Proof. The dimension analysis used in the proof of Lemma 16 is also valid
here and yields the result.

22Up to a harmless s2 factor obtained from the cohomology weight of the part ν1.
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Finally, we can apply T -equivariant localization to both sides of the cor-
respondence of Lemma 17. The localization contributions where the entire
curve β lies over 0 ∈ P1

2 yield23 the residue invariants appearing in Proposi-
tion 15. All the other terms in the localization formula include unconstrained
curves over ∞ ∈ P1

2 with positive [P1
1] components — all such contributions

vanish.24 The T -equivariant localization relation applied to Lemma 17 com-
pletes the proof of Proposition 15

Proposition 15 was the last step in the proof of Proposition 14. The proof
of Proposition 14 completes the proof of Theorem 5.

5 Bi-relative residue theories

5.1 Overview

In order to prove Theorem 1, we must first extend Theorem 2 to non-toric
surfaces S which are projective bundles over higher genus curves (as discussed
in Section 2.6). Our strategy is to extend Proposition 3 to such surfaces. The
extension of Theorem 2 then follows as a consequence.

In order to extend Proposition 3 to projective bundles S over higher genus
curves, we will degenerate S. To carry out the argument, we will require a
descendent correspondence for a particular residue theory in a bi-relative
3-fold geometry.

5.2 Bi-relative geometry

Following the notation of Section 4.4, let

Y = P1
1 ×P1

2 ×P1
3 , Y∞ = P1

1 ×P1
2 × {∞} ,

and let D∞ ⊂ Y be the divisor

D∞ = P1
1 × {∞} ×P1

3 .

We will consider the bi-relative 3-fold geometry

Y / Y∞ ∪D∞ . (57)

23Up to a harmless s2 factor obtained from γ0.
24The proof can be obtained inductively from the geometry Y/Y0 ∪Y∞ by considering

the integrand τ0(γ0). We leave the details as an exercise for the reader.
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Since the divisors Y∞ and D∞ intersect, the full stable pairs and Gromov-
Witten theories of the geometry (57) are not described by standard relative
techniques [9, 12].

Fortunately, we are only interested here in a corner of the bi-relative
geometry (57) which can be approached by standard relative geometry —
the residue theory over 0 ∈ P1

2. To define the residues over 0 ∈ P1
2, curves

intersecting Y∞ ∩ D∞ do not arise, so the standard relative methods are
sufficient.

The descendent correspondence for residue theory of (57) over 0 ∈ P1
2

will play a crucial role in the extension of Proposition 3 and Theorem 2.

5.3 Construction I

Consider the moduli space of stable pairs Pn(Y/Y∞, β)η with curve class

β = d1[P
1
1] + d2[P

1
2] + d3[P

1
3]

and C∗
1 × C∗

2-equivariant relative condition η along Y∞ with cohomology
weights supported on

P1
1 × {0} × {∞} ⊂ Y∞ .

Define the open set
Vn,β,η ⊂ Pn(Y/Y∞, β)η

to be the locus of stable pairs for which D∞ is not a zero divisor.
More precisely, a stable pair in the relative geometry Y/Y∞ is supported

on a destabilization Ỹ of Y along Y∞. The original divisor D∞ degenerates
to the reducible divisor

D̃∞ = π−1
2 (∞) ⊂ Ỹ, π2 : Ỹ → P1

2 .

We define Vn,β,η to be the open set of stable pairs for which D̃∞ is not a zero

divisor.25 In other words, the stable pair is transverse to D̃∞: there are no
free points (the cokernel of the stable pair) on D̃∞. Via the intersection with
D̃∞, we obtain a canonical map26

ǫ : Vn,β,η → Hilb(P1
1 ×P1

3 /P
1
1 × {∞}, d2) .

25The moduli space Pn(Y/Y∞, β)η is not relative to ‹D∞, so transversality along ‹D∞

is a non-trivial condition. There is no bubbling along ‹D∞.
26The map involves possible stabilization. Stabilization here contracts bubbled compo-

nents which have continuous automorphisms fixing the boundary sheaf.
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Here, Hilb(P1
1 × P1

3 /P
1
1 × {∞}, d2) is the Hilbert scheme27 of d2 points of

the surface P1
1 ×P1

3 relative to the divisor P1
1 × {∞}.

The original 3-torus T acting on Y acts on Vn,β,η. While Vn,β,η is certainly
not compact, the C∗

2-fixed point locus is compact — all features of the stable
pair occur on

D̃0 = π−1
2 (0) ⊂ Ỹ .

A C∗
2-fixed stable pair in Vn,β,η meets D̃∞ transversely. On Ỹ \ D̃0, C

∗
2-fixed

stable pairs are simply the pull-backs of 0-dimensional subschemes of D̃∞.
All components of positive degree over P1

1×P1
3 of C

∗
2-fixed curves associated

to stable pairs in Vn,β,η lie over 0 ∈ P1
2.

Let θj, θ
′
j′ ∈ H∗

C∗

1
(P1

1,Q) be as in Section 4.1. Let

[0, 0], [0,∞] ∈ H∗
C∗

2×C∗

3
(P1

2 ×P1
3)

denote the classes of the points (0, 0) and (0,∞) respectively. Let

φ ∈ H∗
C∗

1×C∗

3
(Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2),Q) .

We define the uncapped residue descendent series

VP
β

Ñ
k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞])

é
Y/Y∞∪D∞,T

η,φ

=

∑

n∈Z

qn
∫

[Vn,β,η ]vir

k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]) ∪ ǫ∗(φ)

by T-equivariant residues.

5.4 Construction II

Next, we consider the moduli of stable pairs for the relative geometry

Y / Y∞ ∪D∞ . (58)

with curve classes d2[P
1
2]. Since

[P1
2] ·Y∞ = 0 ,

27The Hilbert scheme of points of a surface relative to a divisor is a special case of the
relative ideal sheaf moduli for 3-folds. See [39] for a discussion and study.
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the curves never meet Y∞. So the delicate study of geometry relative to the
singularities of Y∞ ∪D∞ can be completely avoided. The moduli space

Pn(Y/Y∞ ∪D∞, d2[P
1
2])

is easily constructed. The projections of the curves to

P1
1 × {0} ×P1

3

are never allowed to meet

P1
1 × {0} × {∞} ⊂ Y∞ .

Bubbling occurs along Y∞ to keep the projections away. The points of the
resulting moduli space corresponds to stable pairs which meet D̃∞ away from
the intersection with Y∞. Hence, the deformation theory and virtual class
are standard.

The boundary conditions along D∞ are defined via the canonical map

ǫ : Pn(Y/Y∞ ∪D∞, d2[P
1
2]) → Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2) .

While any element of the cohomology of Hilb(P1
1×P1

3 /P
1
1×{∞}, d2) imposes

a boundary condition, special elements corresponding to the Nakajima basis
of the cohomology of the Hilbert scheme of points in the absolute case will
play a distinguished role.

Let µ be partition of d2 weighted by the cohomology of the surfaceP1
1×P1

3.
Explicitly,

µ = {(µ1, ω1), . . . , (µℓ, ωℓ)}, d2 =
ℓ∑

i=1

µi, ωi ∈ H∗
C∗

1×C∗

3
(P1

1 ×P1
3,Q). (59)

Such a weighted partition determines an element

Nak(µ) ∈ H∗
C∗

1×C∗

3
(Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2),Q)

by the following construction. Recall
Ä
P1

1 ×P1
3 /P

1
1 × {∞}

äℓ
→ P1

1 ×P1
3

is the space of ordered points in the relative surface geometry, see Section
1.2. The cohomology weights ωi pull-back canonically to the space of pointsÄ
P1

1 ×P1
3 /P

1
1 × {∞}

äℓ
. Let

Cµ ⊂
Ä
P1

1 ×P1
3 /P

1
1 × {∞}

äℓ
× Hilb

Ä
P1

1 ×P1
3 /P

1
1 × {∞}, d2

ä
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be the closure of the locus of distinct points in (P1
1×P1

3 /P
1
1×{∞})ℓ carrying

punctual subschemes of lengths µ1, . . . , µℓ(µ). Let

Nak(µ) =
1

z(µ)
pr2∗

Ä
Cµ · pr

∗
1(ω1 ∪ . . . ∪ ωℓ)

ä

with respect to the projections of

(P1
1 ×P1

3 /P
1
1 × {∞})ℓ × Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2)

onto the first and second factors.
Let D0 ⊂ Y be the divisor lying over 0 ∈ P1

2. We can also consider the
rubber moduli spaces of stable pairs

Pn(Y/Y∞ ∪D0 ∪D∞, d2[P
1
2])

∼

which arises in the boundary of Pn(Y/Y∞∪D∞, d2[P
1
2]) overD∞. In addition

to the boundary map ǫ∞ associated to D∞, there is also a boundary map

ǫ0 : Pn(Y/Y∞ ∪D0 ∪D∞, d2[P
1
2])

∼ → Hilb(P1
1 ×P1

3 / P1
1 × {∞}, d2)

obtained by the intersection with D̃0.
As in Section 2.4.4, we have the cotangent line classes

Ψ0,Ψ∞ ∈ H2
C∗

1×C∗

3
(Pn(Y/Y∞ ∪D0 ∪D∞, d2[P

1
2])

∼
,Q) .

Define the rubber series

RP
d2[P1

2]

Ç
1

−Φ0 + s2

å
T

φ,µ

=

∑

n∈Z

qn
∫

[Pn(Y/Y∞∪D0∪D∞,d2[P1
2])

∼
]vir

1

−Φ0 + s2
· ǫ∗0(φ) ∪ ǫ

∗
∞(Nak(µ)) .

Here, φ ∈ H∗
C∗

1×C∗

3
(Hilb(P1

1 ×P1
3 / P1

1 × {∞}, d2),Q) is an arbitrary class.

5.5 Definition of the bi-relative residue

We define the bi-relative capped descendent residue theory

CP
0

Ñ
k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]), β

é
Y/Y∞∪D∞,T

η,µ
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by the formula

∑

i

VP
β

Ñ
k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞])

é
Y/Y∞∪D∞,T

η,φi

· q−d2 RP
d2[P1

2]

Ç
1

−Φ0 + s2

å
T

φ∨

i
,µ

where the sum is over the components of a C∗
1 × C∗

3-equivariant Künneth
decomposition

f∑

i=1

φi ⊗ φ∨
i = [∆] ∈ HC∗

1×C∗

3
(Hilb× Hilb,Q)

of the diagonal of Hilb(P1
1 ×P1

3 / P1
1 × {∞}, d2).

5.6 Motivation

We have given above a rigorous definition of the bi-relative capped descendent
residue theory. If we had a complete definition of the stable pairs theory of
the bi-relative geometry Y/Y∞ ∪D∞, the definition of

CP
0

Ñ
k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]), β

é
Y/Y∞∪D∞,T

η,µ

(60)

as a capped residue theory would be immediate. Since we are interested in
the residue theory over 0 ∈ P1

2, the stable pairs do not interact with the
singularities of Y∞ ∪D∞, and we are able to define (60) by hand.

5.7 Gromov-Witten theory

Following every step of the stable pairs construction, we can also define a
bi-relative capped descendent residue theory for stable maps,

CGW
0

Ñ
k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]), β

é
Y/Y∞∪D∞,T

η,µ

. (61)

Moreover, the depth induction techniques of Sections 3 – 4 applied to both the
descendent insertions and to the parts of µ yield the following correspondence.
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Theorem 6. We have

CP
0

Å k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]), β

ã
Y/Y∞∪D∞,T

η,µ
∈ Q(q, s1, s2, s3)

and the correspondence

(−q)−dβ/2CP
0

Å k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]), β

ã
Y/Y∞∪D∞,T

η,µ
=

(−iu)dβ+ℓ(η)−|η|+ℓ(µ)−|µ|CGW
0

Å k∏

j=1

τij(θj[0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]) , β

ã
Y/Y∞∪D∞,T

η,µ

under the variable change −q = eiu.

Proof. We take the relative condition µ of the form (59) to have cohomology
weights

ωi = γi[0] or γi[∞]

where γi ∈ H∗
C∗

1
(P1

1,Q) and [0], [∞] ∈ H∗
C∗

3
(P1

3,Q) are the classes of the C∗
3-

fixed points.
To prove Theorem 6, we exactly follow the depth induction used in the

proof of Theorems 4 and 5. The depth count has two components:

• the number of descendent insertions of the form τi′
j′
(θ′j′ [0,∞]),

• the number of parts of µ with weights of the form γ[∞].

There is no difficulty in including the parts of µ over ∞ ∈ P1
3 in the T-

equivariant localization formula of Lemma 9. The descendents over ∞ ∈ P1
3

were used to rigidify the rubber — we can also use the parts of µ to rigidify
the rubber. The outcome is a reduction of Theorem 6 to the base case where
all the descendent insertions and parts of µ lie over 0 ∈ P1

3.
Theorem 6 in the base case concerns only 3-leg descendent vertices at

the points (0, 0, 0), (∞, 0, 0) ∈ Y and the capped rubber contributions over
∞ ∈ P1

3. The GW/P correspondence for the 3-leg descendent vertex has been
established in [33]. The correspondence for the capped rubber of ∞ ∈ P1

3

been treated already in Section 4.3 via Proposition 15.
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5.8 Degeneration

Let S be a nonsingular projective surface equipped with two line bundles L0

and L∞. Let
π : PS → S

be the P1-bundle obtained from the projectivization of the sum L0 ⊕ L∞.
The fiberwise C∗-action on PS leaves the divisor

S∞ = P(L∞) ⊂ PS

invariant. Let C ⊂ S be a nonsingular curve, and let

PC = π−1(C) ⊂ PS .

Via the fiberwise C∗-action, we can define capped bi-relative residue the-
ories for the geometry

PS /PC ∪ S∞

for stable pairs and stable maps. The constructions of Sections 5.3 – 5.5 apply
here: only the fiberwise C∗

2-action was needed there to define the bi-relative
residue theories. We therefore have capped bi-relative residue theories

CP
0

Ñ
k∏

j=1

τij(γj), β

é
PS/PC∪S∞,C∗

η,µ

, CGW
0

Ñ
k∏

j=1

τij(γj), β

éPS/PC∪S∞,C∗

η,µ

(62)

where γ1, . . . , γk ∈ H∗
C∗(PS,Q) are classes supported on S0, η is a C∗-

equivariant boundary condition along PC with support on PC ∩ S0, and

Nak(µ) ∈ H∗(Hilb(S /C, |µ|),Q)

is a Nakajima element.
The capped bi-relative residue theories occur naturally in the degenera-

tion formula. Let
π : S → ∆

be a nonsingular 3-fold fibered over an irreducible nonsingular base curve ∆.
Let S be a nonsingular fiber, and let

A ∪C B
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be a reducible special fiber consisting of two nonsingular surfaces intersecting
transversally along a nonsingular surface C. Let

L0,L∞ → S

be two line bundles. The degeneration

PS = P(L0 ⊕ L∞) → B (63)

is a nonsingular 4-fold with a reducible fiber

PS1 ∪PC
PS2 .

Let [P] ∈ H2(PS,Z) be the curve class of the P1-fiber.
To write the degeneration formula corresponding to the geometry (63),

we require the following notation:

• Let β = βS0 + d[P] ∈ H2(PS,Z) where βS0 ∈ H2(S0,Z).

• Let γ1, . . . , γk ∈ H∗
C∗(PS,Q) be classes supported on S0.

• Let µ be a partition of d with cohomology weights lying in H∗(S∞,Q).

The degeneration formula for stable pairs is

CP
0

Å k∏

j=1

τij(γj), β
ã
PS/S∞,C∗

µ
=

∑
CP
0

Å ∏

j∈J1

τij(γj), β1

ã
PA/PC∪A∞,C∗

η,µ1
(−1)|η|−ℓ(η)z(η)q−|η|

· CP
0

Å∏

i∈J2

τij(γj), β2

ã
PB/PC∪B∞,C∗

η∨,µ2
.

The sum is over all distributions of descendents, distributions of µ, and curve
class splittings

J1 ∪ J2 = {1, . . . , k}, µ = µ1 ∪ µ2, β = β1 + β2,

where we have
β1 = βA0 + d1[P], β2 = βB0 + d2[P]
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with βA0 ∈ H2(A0,Z), βB0 ∈ H2(B0,Z), and d1 + d2 = d. The sum is also
over a basis η of H∗

C∗(PC \PC ∩S∞,Q) supported on PC ∩S0.
The above degeneration formula is straightforward consequence of the

standard degeneration formula for stable pairs residue theories and the defi-
nition of the bi-relative integrals.28 We leave the details to the reader.

The degeneration formula for Gromov-Witten theory takes a parallel
form,

CGW
0

Å k∏

j=1

τij(γj), β
ã
PS/S∞,C∗

µ
=

∑
CGW
0

Å∏

j∈J1

τij(γj), β1

ã
PA/PC∪A∞,C∗

η,µ1
z(η)u2ℓ(η)

· CGW
0

Å∏

i∈J2

τij(γj), β2

ã
PB/PC∪B∞,C∗

η∨,µ2

with the same summation conventions. The correspondence

k∏

j=1

τij(γj) 7→
k∏

j=1

τij(γj)

is defined via the conventions of Sections 1.3 for relative geometries. The
relative diagonals and log tangent bundle are used.

The above degeneration formulas are compatible with the natural gener-
alization of Conjecture 4 for capped bi-relative residue theories.

Conjecture 5. For the theories (62), we have

CP
0

Å k∏

j=1

τij(γj), β
ã
PS/PC∪S∞,C∗

η,µ
∈ Q(q, t)

and the correspondence

(−q)−dβ/2CP
0

Å k∏

j=1

τij(γj), β
ã
PS/PC∪S∞,C∗

η,µ
=

(−iu)dβ+ℓ(η)−|η|+ℓ(µ)−|µ|CGW
0

Å k∏

j=1

τij(γj), β
ã
PS/PC∪S∞,C∗

η,µ

28Since the curves of the residue theory with positive S-degree lie in S0 before degener-
ation, the limits lie in A0 and B0 after degeneration.
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under the variable change −q = eiu.

The conditions imposed on β, γj, µ, and η in Conjecture 5 are as discussed
for the degeneration formula.

5.9 Review

Theorems 4 – 6 are parallel results. The strategy of depth induction is the
main idea in the proof of Theorem 4 for descendents on the cap. The base
case is the correspondence for the 1-leg capped descendent vertex of [33].
For the relative geometry P1 × C×P1 / P1 × C, the same depth induction
is valid, but the base case, settled in Proposition 14, is new. Finally, for
the bi-relative geometry of Theorem 6, the relative constraints along D∞ are
new. Fortunately, the relative insertions fit into the original depth induction.

Theorem 6 and the degeneration formula of Section 5.8 are the main
technical results which will be needed to study descendent correspondences
for projective bundles over curves.

6 Projective bundles over higher genus curves

6.1 Overview

Let C be an nonsingular projective curve of genus g equipped with a rank 2
vector bundle Λ → C and two line bundles

LC
0 , L

C
∞ → C .

Let S be the nonsingular projective surface obtained by the projectivization
of Λ,

S = P(Λ)
ǫ

−→ X .

The projective bundle

PS = P(ǫ∗LC
0 ⊕ ǫ∗LC

∞) → S (64)

admits sections
Si = P(ǫ∗LC

i ) ⊂ PS .

We will establish here the relative descendent correspondence of Conjecture
4 for PS/S∞.
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Relative projective bundle geometries over toric surfaces were studied in
Section 2. We follow here the conventions and constructions of Section 2.
Let

Γ = (γ1, . . . , γℓ), γi ∈ H∗(S,Q) .

Since S has odd cohomology, the classes γi may be of odd (real) degree.
We consider capped contributions over S0 in curve class

β = β0 + d[P], β0 ∈ Eff(S0).

Let µ be a boundary condition along S∞ with |µ| = d,

µ = {(µ1, ω1), . . . , (µℓ(µ), ωℓ(µ))}

with ωi ∈ H∗(S∞,Q). Again, the classes ωi may be of odd (real) degree.

Proposition 18. The C∗-equivariant descendent correspondence for the capped
contributions over S0 holds for the geometry (64):

CP
0 (τα(Γ0), β)

PS/S∞,C∗

µ ∈ Q(q, t)

and we have

(−q)−dβ/2 CP
0 (τα(Γ0), β)

PS/S∞,C∗

µ = (−iu)dβ+ℓ(µ)−|µ| CGW
0

Å
τα(Γ0), β

ã
PS/S∞,C∗

µ

under the variable change −q = eiu.

The proof of Proposition 18 will be given in Sections 6.2–6.6. In the
toric case studied in Section 2, Proposition 3 was shown to formally imply
Theorem 2. For the geometry (64), Proposition 18 implies the descendent
correspondence by the same argument.

Theorem 7. For the relative geometry PS/S∞ associated to (64) and classes
γi ∈ H∗

C∗(PS,Q), we have

ZP

Å
PS/S∞; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β
∈ Q(q, t)

and the correspondence

(−q)−dβ/2ZP

Å
PS/S∞; q

∣∣∣∣τα1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β

= (−iu)dβ+ℓ(µ)−|µ|Z′
GW

Å
PS/S∞; u

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
∣∣∣∣ µ
ãC∗

β

under the variable change −q = eiu.
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The parallel descendent correspondence holds when the projective bundle
geometry PS/S0 ∪ S∞ is taken relative to both sections.

6.2 Torus actions

If Λ splits as a sum of line bundles on C,

Λ = Λ0 ⊕ Λ∞ , (65)

then S = P(Λ) admits a fiberwise C∗-action by scaling. The 3-fold

PS = P(ǫ∗LC
0 ⊕ ǫ∗LC

∞) (66)

then carries a 2-dimensional torus action

C∗
1 × C∗

2 ×PS → PS

where C∗
1 is the scaling associated to the splitting (65) and C∗

2 is the scaling
associated to the splitting (66).

In case Λ splits, we will prove the natural C∗
1 × C∗

2-equivariant lift of
Proposition 18:

CP
0 (τα(Γ0), β)

PS/S∞,C∗

1×C∗

2
µ ∈ Q(q, s)

and we have

(−q)−dβ/2 CP
0 (τα(Γ0), β)

PS/S∞,C∗

1×C∗

2
µ =

(−iu)dβ+ℓ(µ)−|µ| CGW
0

Å
τα(Γ0), β

ã
PS/S∞,C∗

1×C∗

2

µ

under the variable change −q = eiu.
Since every rank 2 bundle Λ is deformation equivalent to a split bundle,

we can assume Λ is split in the proof of Proposition 18. We will prove the
above C∗

1 ×C∗
2-equivariant correspondence (which of course then implies the

C∗
2-equivariant statement of Proposition 18).

6.3 Invertibility

Before proving Proposition 18, we will require an auxiliary result for the
capped residue theory

CP
0

Å k∏

j=1

τij(θj[0, 0]), d[P
1
3]
ã
Y/Y∞∪D∞,T

η,∅
(67)
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derived from the analysis of stable pairs descendents in [32].
Let P(d, 2) be the set of pairs of partitions (η0, η∞) satisfying

|η0|+ |η∞| = d.

We define the boundary condition η = (η0, η∞) of (67) by weighting the parts
of η0 with the class of the point (0, 0,∞) ∈ Y∞ and the parts of η∞ with the
class of the point (∞, 0,∞) ∈ Y∞.

Let QP(d,2) denote the linear space of functions from P(d, 2) to the field
Q(q, s1, s2, s3). Let p0, p∞ ∈ H∗

C∗

1

(P1
1,Q) be the classes of the fixed points

0,∞ ∈ P1
1. Let

τ̃(p) =
∞∑

i=0

c0i τi(p0[0, 0]) +
∞∑

i=0

c∞i τi(p∞[0, 0]) (68)

be a finite linear combination of descendents. For w ≥ 0, define a function
on P(d, 2) by:

γw : P(d, 2) → Q(q, s1, s2, s3), η 7→ CP
0

Å
τ̃(p)w, d[P1

3]
ã
Y/Y∞∪D∞,T

η,∅
.

Here, CP
0 is defined by a multilinear expansion of the insertion τ̃(p)w.

Lemma 19. For d ≥ 0, there exists a linear combination τ̃(p) for which the
set of functions,

{γ0, γ1, γ2, . . . },

spans QP(d,2).

Proof. The spanning statement concerns the linear algebra of the field of
rational functions Q(q, s1, s2, s3). We must prove non-degeneracy of the set
{γ0, γ1, γ2, . . . }. We will require only the leading q term of

CP
0

Å
τ̃(p)w, d[P1

3]
ã
Y/Y∞∪D∞,T

η,∅
.

The matter is then an assertion about the cohomology of the Hilbert scheme
of points of Y∞.

After changing the basis of η to the C∗
1 × C∗

2-fixed points of the Hilbert
scheme of points of Y∞ at (0, 0,∞) and (∞, 0,∞), the action of τ̃(p) is
determined in Section 1.2 of [32]. The operator τk(p0[0, 0]) is diagonal in
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the fixed point basis with eigenvalues given by symmetric functions in the
weights29 of the structure sheaf of the fixed point of the Hilbert scheme of
Y∞ at (0, 0,∞). Modulo lower order symmetric functions, the eigenvalue of
τk(p0[0, 0]) is simply the kth power sum.

Since the power sums determine all symmetric functions, we can find a
finite linear combination

τ̃(p) =
∞∑

i=0

c0i τi(p0[0, 0]) +
∞∑

i=0

c∞i τi(p∞[0, 0])

with distinct eigenvalues on the C∗
1 × C∗

2-fixed points of the Hilbert scheme
of Y∞ at (0, 0,∞) and (∞, 0,∞). By the Vandermonde determinant, the
Lemma is proven.

Lemma 19 is similar to Lemma 5.6 of [27]. The parallel result for

CGW
0

Å
τ̃(p)w, d[P1

3]
ã
Y/Y∞∪D∞,T

η,∅

follows from the correspondence of Theorem 6.
We have used the full T-action to prove Lemma 19. However, the weight

s3 of third factor C∗
3 of T is not needed in the argument. Hence, Lemma 19

holds for

γw : P(d, 2) → Q(q, s1, s2), η 7→ CP
0

Å
τ̃(p)w, d[P1

3]
ã
Y/Y∞∪D∞,C∗

1×C∗

2

η,∅
.

6.4 Even theory

We first prove Proposition 18 in case all the cohomology insertions γj and
all the cohomology weights ωi are of even (real) degree.

If the underlying curve C is P1, Proposition 18 specializes to Proposition
3 and is established. Consider a fiber F of

ǫ : R = P(Λ0 ⊕ Λ∞) → P1. (69)

We can degenerate R to the normal cone of F ,

R  R ∪F P1 ×P1 .

29The weights depend only on s1 and s2.

74



We can degenerate the line bundles

Λ0, Λ∞, ǫ
∗LC

0 , ǫ
∗LC

∞ (70)

so the restrictions to P1 × P1 are all trivial. By the restriction of Theorem
6 to the subtorus C∗

1 × C∗
2, Lemma 19 restricted to C∗

1 × C∗
2, and the com-

patibility of the descendent correspondence with the degeneration formula,
we conclude Conjecture 5 holds C∗

1×C∗
2-equivariantly for PR/PF ∪R∞. Re-

peating the argument for another fiber F ′ of ǫ shows Conjecture 5 holds
C∗

1 × C∗
2-equivariantly for PR/PF∪F ′ ∪R∞.

Next suppose E is a genus 1 carrying line bundles Λ0, Λ∞, LE
0 , and L

E
∞

with
ǫ : S = P(Λ0 ⊕ Λ∞) → E .

We can degenerate E to a nodal rational curve. The line bundles carried by
E can be taken to specialize to line bundles on the nodal curve. Since there is
no vanishing even cohomology for the degeneration, we conclude Conjecture
5 holds C∗

1 × C∗
2-equivariantly for the genus 1 case PS/S∞ as a consequence

of the genus 0 case PR/PF∪F ′ ∪R∞.
Since we know Conjecture 5 holds C∗

1 × C∗
2-equivariantly for the genus 1

case PS/S∞, degeneration to the normal cone to fibers of ǫ and Lemma 19
restricted to C∗

1 ×C∗
2 prove Conjecture 5 holds C∗

1 ×C∗
2-equivariantly for the

genus 1 cases
PS/PF ∪ S∞ , PS/PF∪F ′ ∪ S∞ . (71)

Finally, if C is curve of arbitrary genus g, we can degenerate C to a
chain of g elliptic curves. Since there is no vanishing cohomology, we deduce
Conjecture 5 in the even case from the geometries (71).

6.5 Odd theory

6.5.1 Reduction to genus 1

Suppose C is a genus g curve carrying line bundles Λ0, Λ∞, LC
0 , and L

C
∞ with

ǫ : S = P(E0 ⊕ E∞) → C .

We now consider Conjecture 5 equivariantly with respect to C∗
1 × C∗

2 for
classes γj and ωi in full generality.

Since the degeneration of C to a chain of genus 1 curves has no vanishing
cohomology, we may assume C is of genus 1. By the C∗

1 × C∗
2-equivariant
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methods of Section 6.4, Conjecture 5 for (71) follows from Conjecture 5 for
PS/S∞.

We may further simplify the geometry by degenerating C to the normal
cone to a point p ∈ C,

C  C ∪p P
1

and requiring the line bundles Λ0, Λ∞, ǫ
∗LC

0 , ǫ
∗LC

∞ to be trivial on C in the
limit. We then obtain a degeneration

S  P1 × C ∪F R ,

where R is of the form (69). Since Conjecture 5 has been already proven
C∗

1 × C∗
2-equivariantly for PR/PF ∪ R∞, we need only prove Conjecture 5

holds C∗
1 × C∗

2-equivariantly for the special case

ǫ : S = P(OE ⊕ OE) → E, LE
0 = OE, LE

∞ = OE, g(E) = 1 . (72)

Explicitly, the geometry is

PS/S∞ = P1 ×P1 × E / P1 × {∞} × E.

6.6 Proof of Proposition 18

Consider the stable pair and Gromov-Witten theories

CP
0 (τα(Γ0), β)

PS/S∞,C∗

1×C∗

2
µ , CGW

0

Å
τα(Γ0), β

ã
PS/S∞,C∗

1×C∗

2

µ
(73)

for the genus 1 geometry (72). Both are uniquely determined from the cor-
responding even theories by the following four properties:

(i) Algebraicity of the virtual class,

(ii) Degeneration formulas for the relative theory in the presence of odd
cohomology,

(iii) Monodromy invariance of the relative theory,

(iv) Elliptic vanishing relations.
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The properties (i)-(iv) were used in [27] to determine the full relative Gromov-
Witten descendents of target curves in terms of the descendents of even
classes.

The results of Section 5 of [27] are entirely formal and apply verbatim to
the theories (73). Lemma 19 replaces Lemma 5.6 of [27]. Let

L0, L∞ ∈ H∗
C∗

1×C∗

2
(P1

1 ×P1
2 × E,Q)

be the classes of the curves

{0} × {0} × E and {∞} × {0} × E

respectively. For γ ∈ H∗(E,Q), let30

τ̃(γ) =
∞∑

i=0

c0i τi(L0γ) +
∞∑

i=0

c∞i τi(L∞γ).

We start, as in (5.11) of [27], by studying the descendents

CP
0

Ä
τ̃(α)τ̃(β), d1[P

1
1] + d3[E]

ä
PS/S∞,C∗

1×C∗

2

η,∅
, (74)

CGW
0

Å
τ̃(α)τ̃(β), d1[P

1
1] + d3[E]

ã
PS/S∞,C∗

1×C∗

2

η,∅

for the geometry (72) where

α, β ∈ H1(E,Q), α ∪ β = 1 .

Exactly following [27], the descendents (74) are determined from the even
theory. Since the relations (i-iv) respect the descendent correspondence, we
deduce Proposition 18 from the even case proven in Section 6.4. Also, the
rationality of the even theory implies the rationality of the full theory. When
the invertibility of Lemma 19 is applied here, an induction on d1 is necessary.

The method developed in Section 5 of [27] proceeds to handle all descen-
dent insertions. For the case studied in [27], the descendents

τn(γ), γ ∈ H∗(E,Q)

30Here, the coefficients c0i and c∞i are taken so Lemma 19 is valid. When γ is a class of
a point in E, we recover the C∗

1 × C∗

2 specialization of (68).
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are labelled only by the integer n. Here, the insertions are of the form

τn(L0γ), τn(L∞γ), (n, L0γ), (n, L∞γ), γ ∈ H∗(E,Q)

where the latter two types31 are relative conditions of µ. The insertion la-
belling is the only difference. The reduction to the even descendents exactly
follows Section 5 of [27].

6.7 Products S × C

Let S be a nonsingular projective toric surface equipped with the action of
a 2-dimensional torus T . Let C be a nonsingular projective curve of genus
g. A simpler result than Theorem 7 is the following.

Proposition 20. For γi ∈ H∗
T (S × C,Q), we have

ZP

Å
S × C; q

∣∣∣∣ τα1−1(γ1) · · · ταℓ−1(γℓ)
ãT
β
∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP

Å
S × C; q

∣∣∣∣ τα1−1(γ1) · · · ταℓ−1(γℓ)
ãT
β

= (−iu)dβZ′
GW

Å
S × C; u

∣∣∣∣ τa1−1(γ1) · · · ταℓ−1(γℓ)
ãT
β

under the variable change −q = eiu.

Proof. Let p1, . . . , pn denote the T -fixed points of S. By considering localiza-
tion for stable pairs and stable maps on S×C with respect to the torus T , we
can reduce the descendent correspondence to a local result for C2 × C with
caps in the two C2 directions. The localization formula is in terms of n such
capped C2 × C geometries (connected by simple capped edge geometries).

Consider the capped geometry C2 × C. If all the descendent insertions
γi have even (real) cohomological degree, we can reduce to the case where
g(C) = 0 by our standard degeneration and relative arguments. Crucial here
is a tri-relative residue theory for

C2 ×P1 / C2 × {∞} (75)

31The relative conditions must be treated on the same footing as the descendent inser-
tions as the relative weights may also be odd.
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defined by completely parallel constructions to the bi-relative case considered
in Section 5. The tri-relative geometry has caps in the two C2 directions on
(75). The proof of the GW/P descendent correspondence for the tri-relative
cap (75) exactly follows the proof Theorem 4 with the two relative directions
corresponding to C2 handled as in the proof Theorem 6.

To control the odd descendents, we follow the strategy of Section 6.5 (and
[27]). We reduce to the case where g(C) = 1 and express the full theory in
terms of the even theory. Lemma 19 for T still applies.

We leave the straightforward details here to the reader. The capped edges
are 1-leg geometries and are easily handled.

7 Proof of Theorem 1

7.1 Overview

We have now proven the GW/P descendent correspondences in sufficiently
many geometries to deduce Theorem 1. The idea is to degenerate the com-
plete intersection by factoring the equations. We present the proof carefully
for the quintic in P4 following the scheme of [22]. The argument for general
Fano and Calabi-Yau complete intersections in products of projective spaces
is identical.

7.2 Simple theories

A complete intersection pair (V,W ) is a nonsingular complete intersection

V ⊂ Pn1 × · · · ×Pnm .

together with a nonsingular divisor W ⊂ V cut out by a hypersurface in
Pn1 × · · · ×Pnm . In particular,

W ⊂ Pn1 × · · · ×Pnm

is also a complete intersection.
A class γ ∈ H∗(V,Q) is simple if γ lies in the image of the restriction map

H∗(Pn1 × · · · ×Pnm ,Q) → H∗(V,Q).

If V is nonsingular complete intersection of dimension 3, the simple coho-
mology of V equals the even cohomology by the Lefschetz results.
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The simple Gromov-Witten and stable pairs theories of V consist of the
integrals of descendents of simple classes. Similarly, the simple Gromov-
Witten and stable pairs theories of the relative geometry V/W consists of
integrals of descendents of simple classes with no restrictions on the coho-
mology classes of W in the relative constraints.

7.3 Fano and Calabi-Yau hypersurfaces in P4

7.3.1 Notation

The following notation for curves, surfaces, and 3-folds will be convenient for
our study:

(i) let Cd1,d2 ⊂ P3 be a nonsingular complete intersection of type (d1, d2),

(ii) let Sd ⊂ P3 be a nonsingular surface of degree d,

(iii) let Td ⊂ P4 be a nonsingular 3-fold of degree d.

Finally, let P3[d1, d2] be the blow-up of P3 along Cd1,d2 .

7.3.2 Degeneration for the quintic

Let ZP(T ⋆
5 ) denote the simple stable pairs descendent theory of the Calabi-

Yau quintic 3-fold.32 Factoring the quintic equation yields a degeneration:

T5  T4 ∪S4 P
3[4, 5] (76)

where S4 ⊂ T4 is a linear section and S4 ⊂ P3[4, 5] is the strict transform
of a quartic containing C4,5 ⊂ P3. See Section 0.5.4 of [22] for a detailed
construction of the degeneration (76). The degeneration formula expresses
ZP(T

⋆
5 ) in terms of the relative theories of the special fibers. We write the

relation schematically as

ZP(T
⋆
5 )  ZP(T

⋆
4 /S4) and ZP(P

3[4, 5]/S4) .

Similarly, in Gromov-Witten theory, we have the determination

Z′
GW(T ⋆

5 )  Z′
GW(T ⋆

4 /S4), and Z′
GW(P3[4, 5]/S4) .

By the compatibility of the descendent correspondence with degeneration,
the descendent correspondences for T ⋆

4 /S4 and P3[4, 5]/S4 imply Theorem 1
for T5.

32Here and below, the superscript ⋆ will indicate simple theories.
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7.3.3 Descendent correspondence for P3[4, 5]/S4

Let us start with P3[4, 5]/S4. Degeneration to the normal cone of

S4 ⊂ P3[4, 5]

yields the determination33

Z(P3[4, 5])  Z(P3[4, 5]/S4) and Z(PS4/S4) . (77)

We know the descendent correspondence for all projective bundle geometries
PS4/S4 by Proposition 10. By the invertibility of Proposition 6 of [31], the
determination (77) can be reversed,

Z(P3[4, 5]/S4)  Z(P3[4, 5]) and Z(PS4/S4) .

Hence, the descendent correspondence for P3[4, 5] implies the descendent
correspondence for P3[4, 5]/S4.

An approach to the blow-up P3[4, 5] is explained in Section 3.1 of [22].
Let S4 ⊂ P3 contain C4,5. Degeneration to the normal cone of S4 ⊂ P3 yields

P3
 P3 ∪S4 PS4 (78)

for the projective bundle geometry

π : PS4 = P(OS4 ⊕ OS4(4)) → S4, PS4/(S4)∞ . (79)

The original curve C4,5 ⊂ P3 has limit in (S4)0 ⊂ PS4 . After blowing up the
degeneration (78) along the moving curve C4,5, we obtain

P3[4, 5]  P3 ∪S4 X, X = BC4,5(PS4) .

Here X is the blow-up of PS4 along C4,5 ⊂ (S4)0. In order to prove the
descendent correspondence for P3[4, 5], we need only prove the descendent
correspondence for P3/S4 and X/S4. Using the established descendent cor-
respondences for the toric variety P3 and projective bundles over S4 and
the invertibility of Proposition 6 of [31], we need only prove the descendent
correspondence for X.

33When no superscript appears on the partition function, the statement is understood
to hold for both stable pairs and Gromov-Witten theory.
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To study X, we repeat the blow-up construction of the previous para-
graph. Let PS4 be the projective bundle (79), and let

PC4,5 ⊂ PS4

be the divisor lying over C4,5 ⊂ S4 via π. Degeneration to the normal cone
of PC4,5 ⊂ PS4 yields

PS4  PS4 ∪PC4,5
PPC4,5

. (80)

for the projective bundle geometry

PPC4,5
= P(OC4,5 ⊕ OC4,5(5))×C4,5 P(OC4,5 ⊕ OC4,5(4)) → C4,5 (81)

relative to
PC4,5 = P(OC4,5(5))×C4,5 P(OC4,5 ⊕ OC4,5(4)) .

The original curve C4,5 ⊂ (S4)0 ⊂ PS4 has limit equal to

C4,5 = P(OC4,5)×C4,5P(OC4,5) ⊂ P(OC4,5⊕OC4,5(5))×C4,5P(OC4,5⊕OC4,5(4)) .

After blowing up the degeneration (78) along the moving curve C4,5, we
obtain

X  PS4 ∪PC4,5
Y ,

Y = BC4,5(P(OC4,5 ⊕ OC4,5(5))×C4,5 P(OC4,5 ⊕ OC4,5(4))) .

In order to prove the descendent correspondence for Y , we need only prove
the descendent correspondence for PS4/PC4,5 and Y/PC4,5 .

As we have seen in (81), PPC4,5
is a projective bundle over PC4,5 of the

form required by Theorem 7. Hence, the descendent correspondence holds
for PS4/PC4,5 by inverting

Z(PS4)  Z(PS4/PC4,5) and Z(PPC4,5
/S4) .

The invertibility is possible again by Proposition 6 of [31]. Similarly, the
descendent correspondence for Y implies the descendent correspondence for
Y/PC4,5 .

The last step in proving the descendent correspondence for P3[4, 5]/S4 is
to prove the descendent correspondence for Y . The 3-fold Y is a bundle over
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C4,5 with fiber equal to Bp(P
1 ×P1), the blow-up of P1 ×P1 at a point. By

further degeneration arguments34, we can reduce to the case

Bp(P
1 ×P1)× C4,5

covered by Proposition 20.

7.4 Proof of Theorem 1

We turn now to T ⋆
4 /S4. The normal cone degeneration

T4  T4 ∪S4 PS4

and invertibility yields the determination

Z(T ⋆
4 /S4)  Z(T ⋆

4 ) and Z(PS4/S4) .

Hence, the descendent correspondence for T ⋆
5 follows from the descendent

correspondence for T ⋆
4 .

By factoring the quartic equation defining T4 ⊂ P3, degree reduction can
be continued. The full reduction scheme for the quintic is:

Z(T ⋆
5 )  Z(T ⋆

4 /S4) and Z(P3[4, 5]/S4),

Z(T ⋆
4 /S4)  Z(T ⋆

4 ) and Z(PS4/S4),

Z(T ⋆
4 )  Z(T ⋆

3 /S3) and Z(P3[3, 4]/S3),

Z(T ⋆
3 /S3)  Z(T ⋆

3 ) and Z(PS3/S3),

Z(T ⋆
3 )  Z(T ⋆

2 /S2) and Z(P3[2, 3]/S2),

Z(T ⋆
2 /S2)  Z(T ⋆

2 ) and Z(PS2/S2),

Z(T ⋆
2 )  Z(T ⋆

1 /S1) and Z(P3[1, 2]/S1),

Z(T ⋆
1 /S1)  Z(T ⋆

1 ) and Z(PS1/S1) .

The end points of the scheme are T ∗
1 (which is toric), projective bundles

over toric and K3 surfaces, and blown-up projective spaces. The descendent

34We can degenerate
C4,5  C4,5 ∪P

1

and require all the twisting of Y to lie over P1.
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correspondence has been established for all the end points — the blown-up
projective spaces are handled by the method of Section 7.3.3.

We have proven the GW/P descendent correspondence for the even theo-
ries of all Fano hypersurfaces in P4. We can degenerate all Fano and Calabi-
Yau 3-fold complete intersections by an identical factoring argument. The
outcome is a proof of Theorem 1.

7.5 Proof of Corollary 1

To prove Corollary 1, we start with the descendent correspondence of The-
orem 1. The initial term results of Theorem 2 of [33] then imply the Corol-
lary.

7.6 The Enriques Calabi-Yau

As a further example, we prove the GW/P correspondence for the Enriques
Calabi-Yau 3-fold studied in [11, 23].

Let σ act freely on the product K3 × E by an Enriques involution σK3

on the K3 and by -1 on the elliptic curve. By definition, the quotient

Q = (K3× E) /〈σ〉

is an Enriques Calabi-Yau 3-fold. Since K3×E carries a holomorphic 3-form
invariant under σ, the canonical class is trivial

ωQ = OQ.

By projection on the right,

Q→ E/〈−1〉 = P1 (82)

is a K3 fibration with 4 double Enriques fibers.
Let invP1 be an involution of P1 with 2 fixed points. Let τ act freely on

the product K3×P1 by (σK3, invP1). Let

R =
Ä
K3×P1

ä
/〈τ〉

denote the quotient. By projecting left,

R → K3/〈σK3〉 = S (83)
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is a projective bundle over the Enriques surface S. Two sections of the bundle
(83) are obtained from the fixed points of invP1 . By projecting right,

R → P1/〈invP1〉

is a K3 fibration with 2 double Enriques fibers.
By degenerating the K3 fibration (82), we find a degeneration of the

Enriques Calabi-Yau Q,
Q  R ∪K3 R

where the intersection K3 is a common fiber, see [23, Section 1.4]. Hence the
GW/P correspondence for Q is reduced to the GW/P descendent correspon-
dence for R/K3. The latter reduces to the GW/P descendent correspondence
for R by degeneration to the normal cone and Proposition 10.

The Enriques surface S degenerates35 to a union along an elliptic curve
of a P1-bundle over an elliptic curve and the rational elliptic surface, see [23,
Section 1.3]. We use the corresponding degeneration of (83) to prove the
GW/P descendent correspondence for R. We obtain the following result.

Proposition 21. Let Q be the Enriques Calabi-Yau, and let β ∈ H2(Q,Z)/tor
be a curve class. Then,

ZP

Å
Q; q

ã
β

∈ Q(q) ,

and we have the correspondence

ZP

Å
Q; q

ã
β
= Z′

GW

Å
Q; u

ã
β

under the variable change −q = eiu.
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