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Abstract. The double ramification cycle DRg(A) = DRg(µ, ν)
is a cycle in the moduli space of stable curves parametrizing genus
g curves admitting a map to P1 with specified ramification profiles
µ, ν over two points. In 2016, Janda, Pandharipande, Zvonkine,
and the author proved a formula expressing the double ramification
cycle in terms of basic tautological classes, answering a question
of Eliashberg from 2001. This formula has an intricate combinato-
rial shape involving an unusual way to sum divergent series using
polynomial interpolation. Here we give some motivation for where
this formula came from, relating it both to an older partial formula
of Hain and to Givental’s R-matrix action on cohomological field
theories.

0. Introduction

Let g, n be nonnegative integers satisfying 2g − 2 + n > 0, so that
the moduli space Mg,n of stable curves of genus g with n markings
is nonempty. Let A = (a1, . . . , an) ∈ Zn be a vector of n integers
satisfying a1 + · · · + an = 0. In this paper we will be interested in a
Chow cycle class

DRg(A) ∈ Ag(Mg,n)

that depends on this data.
There are two main perspectives on how to think about and define

DRg(A), the double ramification cycle. The first is the source of its
name; we think of it as parametrizing the genus g curves C that admit
a finite map C → P1 with specified ramification profiles µ, ν over two
points (say 0 and ∞). These two ramification profiles are encoded in
the vector A: we can take the positive and negative components of A
separately to get two partitions of equal size. The marked points with
nonzero ai should then be the points in C lying above 0 and ∞, while
the marked points with ai = 0 are unconstrained. Ramification above
points other than 0 and ∞ is unconstrained.

The above description defines a double ramification locus inside the
moduli space of smooth curvesMg,n that is usually (but not always) of
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pure codimension g. To extend this to a codimension g class onMg,n,
we can use the virtual class in relative Gromov-Witten theory. There
is a moduli space of stable (rubber) maps to P1 with given marked
ramification over two points, Mg,n(P1/{0,∞}, µ, ν)∼, equipped with
a forgetful map p : Mg,n(P1/{0,∞}, µ, ν)∼ → Mg,n, and the double
ramification cycle can be taken to be the pushforward under this map
of the virtual class:

DRg(A) = p∗[Mg,n(P1/{0,∞}, µ, ν)∼]vir ∈ Ag(Mg,n).

The second perspective on DRg(A) is via Abel-Jacobi maps. Let
Xg → Ag be the universal abelian variety of dimension g. Then the
data in the vector A can be used to define a morphism jA :Mg,n → Xg

by

(C, p1, . . . , pn) 7→ (Jac(C),OC(a1p1 + · · ·+ anpn)).

The double ramification locus is then the inverse image under this map
of the zero section Zg of Xg, since C admits a map to P1 with the given
ramification profiles if and only if OC(a1p1 + · · ·+ anpn) is trivial.

This Abel-Jacobi map extends easily to Mct
g,n, the moduli space of

curves of compact type (those with compact Jacobians), but using this
perspective to define the double ramification cycle on all of Mg,n re-
quires more work. It also isn’t obvious that constructing DRg(A) in
this way will give the same class as that given by relative Gromov-
Witten theory, even after restriction to Mct

g,n. For one approach to
these questions using logarithmic and tropical geometry, see the work
of Marcus and Wise [13].

Eliashberg proposed the problem of giving a formula for the double
ramification cycle in 2001, in the context of symplectic field theory.
This problem was solved by Janda, Pandharipande, Zvonkine, and the
author in 2016 [11], giving an explicit combinatorial formula for the
double ramification cycle. This formula has an unexpected form – an
additional integer parameter r > 0 is introduced, then an expression is
written down that becomes polynomial in r for r sufficiently large, and
finally this polynomial is specialized to r = 0. Subsequent papers ex-
tending or generalizing the double ramification cycle formula in various
ways (e.g. [5, 12, 2]) have left the basic combinatorial structure of the
formula virtually unchanged. The purpose of this paper is to discuss
this structure and give some motivation for where it comes from.

In Section 1, we review the tautological classes in the Chow ring
of the moduli space of stable curves. In Section 2, we discuss results
leading up to the formula of [11], most notably Hain’s formula for
the compact type double ramification cycle. Section 3 is the heart of
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the paper and consists of an extended discussion motivating the shape
of the double ramification cycle formula. We conclude in Section 4
by stating the formula and briefly explaining how its proof in [11] is
related to some of the motivation in Section 3.
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1. Tautological classes

1.1. Preliminaries. In this section we review the language in which
the double ramification cycle formula is written. This is the language
of the tautological ring, a subring R∗(Mg,n) ⊆ A∗(Mg,n) containing
most classes that arise naturally in geometry.

Following Faber and Pandharipande [6], the tautological ringsR∗(Mg,n)
can be defined simultaneously for all g, n ≥ 0 satisfying 2g−2+n > 0 as
the smallest subrings of the Chow rings A∗(Mg,n) closed under pushfor-
ward by forgetful maps Mg,n+1 → Mg,n and gluing maps Mg,n+2 →
Mg+1,n or Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2 . Our discussions of
tautological classes will use a more explicit description of them. Graber
and Pandharipande [8, Appendix A] gave a set of additive generators
and a multiplication law satisfied by these generators.

These additive generators are formed from three ingredients: psi
classes, kappa classes, and generalized gluing maps corresponding to
stable graphs. The psi classes ψi ∈ A1(Mg,n), i = 1, . . . , n correspond
to the n marked points and are defined as the first Chern classes of the
cotangent line bundles to the curves at those points. The Arbarello-
Cornalba [1] kappa classes are then the pushforwards of powers of psi
classes:

κa := π∗(ψ
a+1
n+1) ∈ Aa(Mg,n),

where π :Mg,n+1 →Mg,n forgets the last marking. The kappa classes
will not appear in any of the formulas in this paper.

The tautological ring of the moduli space of smooth marked curves,
R∗(Mg,n), is the ring generated by these ψi and κa. To extend this to
R∗(Mg,n) we need classes supported on boundary strata.

1.2. Stable graphs. A stable graph Γ is the combinatorial data of a
boundary stratum in Mg,n. It consists of the following:

(1) a set of vertices V (Γ);
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(2) a genus gv ≥ 0 at each vertex v ∈ V (Γ);
(3) a set of half-edges H(Γ);
(4) an incidence map H(Γ)→ V (Γ);
(5) a partition of H(Γ) into sets of size 2 (called edges, the set of

which is denoted E(Γ)) and sets of size 1 (called legs);
(6) a bijection between the set of legs and {1, . . . , n}.

The underlying graph is required to be connected. The stability con-
straint is that 2gv−2+nv > 0 at each vertex v, where nv is the number
of half-edges incident to v. The genera are constrained by the identity

2g − 2 + n =
∑

v∈V (Γ)

(2gv − 2 + nv),

or equivalently that g −
∑

v gv = h1(Γ), the first Betti number of the
graph. Such a stable graph Γ corresponds to a generalized gluing map

ξΓ :
∏

v∈V (Γ)

Mgv ,nv →Mg,n.

We can then consider classes

ξΓ∗(α) ∈ A∗(Mg,n),

where Γ is a stable graph and α is a monomial in the psi and kappa
classes on theMgv ,nv factors. These are the additive generators for the
tautological ring considered in [8].

1.3. Compact type. The moduli space of curves of compact type,
denotedMct

g,n, is the open subscheme ofMg,n consisting of those curves
whose dual graph is a tree. Its tautological ring R∗(Mct

g,n) is the image

of R∗(Mg,n) under restriction, so it is additively generated by classes
ξΓ∗(α) as above where Γ is a tree.

It will be convenient for us to have notation for the compact type
boundary divisor classes when stating Hain’s formula below, (2). If Γ
is a stable graph with 2 vertices and 1 edge and one of the vertices is
genus h and has those legs with markings in a set S ⊆ 1, 2, . . . , n, let
δh,S = ξΓ∗(1) be the corresponding boundary divisor class.

2. Previous formulas and results

The first progress towards a formula for the double ramification cycle
was when Faber and Pandharipande [7] proved that the double rami-
fication cycle lies in the tautological ring, and thus in theory must be
expressible in terms of the generators described in the previous section.
Their proof, although in principle constructive, involves a complicated
recursion and doesn’t seem to yield a practical formula.
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The first progress towards an explicit formula came when Hain [10]
computed the double ramification cycle when restricted to the compact
type locus Mct

g,n. On this locus the double ramification cycle is the
pullback along an Abel-Jacobi map jA : Mct

g,n → Xg,n of the class
of the zero section Zg,n of the universal abelian variety Xg,n → Ag,n.
Hain showed that the class of this zero section is [Zg,n] = Θg/g! and
computed the pullback of the theta divisor Θ as an explicit divisor on
Mct

g,n:

(1) j∗AΘ =
n∑

i=1

a2
i

2
ψi −

∑
h,S

a2
S

4
δh,S,

where aS =
∑

i∈S ai and the second sum runs over all h, S defining
boundary divisor classes.

Hain’s formula for the compact type double ramification cycle is then

(2) DRct
g (A) =

1

g!
(j∗AΘ)g =

1

g!

(
n∑

i=1

a2
i

2
ψi −

∑
h,S

a2
S

4
δh,S

)g

.

The divisor formula (1) is a homogeneous polynomial of degree 2 in
A, so Hain’s DR formula (2) is a homogeneous polynomial of degree 2g
in A.

Grushevsky and Zakharov [9] extended Hain’s computation slightly,
expanding from Mct

g,n to a slightly larger open subscheme of Mg,n by
adding the locus of curves whose dual graph is a tree with a single loop
added at one vertex. If Γ is the stable graph with a single vertex and
single loop, then their correction term is the codimension g part of

(3) ξΓ∗

(
−

n∏
i=1

exp
(1

2
a2
iψi

) ∞∑
k=1

B2k

2kk!
(ψ + ψ′)k−1

)
,

where ψ1, . . . , ψn are the psi classes on the legs, ψ, ψ′ are the psi classes
on the two half-edges of the loop, and B2k is a Bernoulli number.

In particular, the double ramification cycle is no longer a homoge-
neous polynomial in A when computed beyond compact type. This
was also seen in work of Buryak, Shadrin, Spitz, and Zvonkine [3], who
showed that the top degree intersections of double ramification cycles
with monomials in the psi classes are inhomogeneous polynomials of
degree 2g in A.
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3. Motivation for the formula

In this section we discuss various observations and ideas that come
about when one tries to extend Hain’s formula (2) to Mg,n to obtain
a full double ramification cycle formula.

3.1. Expanding Hain’s formula. Exponentiating a boundary divi-
sor class can be done using the multiplication laws for tautological
classes [8, Appendix A]. Multiplying out Hain’s formula (2) in this way
gives a nice sum over trees: DRct

g (A) is the codimension g part of
(4)∑
T stable tree

1

|Aut(T )|
(ξT )∗

[
n∏

i=1

exp
(1

2
a2
iψhi

)
·

∏
e={h,h′}∈E(T )

1− exp(−1
2
w(h)w(h′)(ψh + ψh′))

ψh + ψh′

]
,

where the function w : H(T )→ Z is defined here by contracting all the
edges in the tree T other than the one containing h and then letting
w(h) be the sum of the ai for the legs i on the same vertex as the
half-edge h.

Extending this formula toMg,n requires us to provide a polynomial
(or power series) in the psi classes for every stable graph Γ, not just
every stable tree. The w(h) definition above does not naturally extend
to non-separating edges, so it isn’t immediately clear how to do this.
Moreover, we know that this power series needs to be (3) for the single-
loop graph, so something quite new is going on even there.

3.2. Cohomological field theory axioms. A cohomological field
theory (CohFT) is a collection of classes Ωg,n(γ1, . . . , γn) on Mg,n for
all g and n, where the inputs γi belong to some finite set S (a basis
for the state space of the CohFT). These classes must satisfy certain
compatibility axioms relating them to each other under pullback by
natural maps between the Mg,n. For one basic treatment of CohFTs
and Givental’s R-matrix action, see [14]. The double ramification cycle
is not quite a CohFT, but it satisfies some subset of the properties of
one. For example, if j : Mg1,n1+1 ×Mg2,n2+1 → Mg,n is a separating
gluing map where the marked points split into sets I1, I2 with |Ii| = ni,
then we have

j∗DRg(a1, . . . , an) = DRg1({ai | i ∈ I1}, t)⊗DRg2({ai | i ∈ I2},−t),
where t ∈ Z is the unique insertion that makes the parameters sum to
0 in each DR term on the right.
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If the double ramification cycle were a CohFT, we’d want a sim-
ilar formula for the pullback along the non-separating gluing map
k :Mg−1,n+2 →Mg,n: the natural thing to write down would be

k∗DRg(a1, . . . , an) =
∑
t∈Z

DRg−1(a1, . . . , an, t,−t),

but it isn’t clear how one might make sense of this infinite sum –
it won’t converge in any standard sense. What is going wrong here
is that CohFTs are supposed to depend multilinearly on parameters
from a finite-dimensional state space, but double ramification cycles
take inputs in Z so the state space appears to be infinite-dimensional.

So the double ramification cycle behaves like a CohFT as far as
separating nodes are concerned, but the state space would have to
be infinite-dimensional and this makes it unclear what to do at non-
separating nodes.

3.3. Givental’s R-matrix action. Teleman [16] proved that semisim-
ple CohFTs all have a very particular graph sum form, given by apply-
ing Givental’s R-matrix action to a CohFT that lives fully in codimen-
sion zero. The rough shape of the resulting formula for a semisimple
CohFT is

Ωg,n(γ1, . . . , γn) =
∑

Γ stable graph

∑
w:H(Γ)→S

1

|Aut(Γ)|
(ξΓ)∗

[
∏

v∈V (Γ)

(vertex factor)
n∏

i=1

(leg factor)
∏

e={h,h′}∈E(Γ)

(edge factor)

]
,

where the second sum is over functions w on the half-edges of the
graph taking values in some set S (a basis for the state space of the
CohFT) and the values of w on the legs h1, . . . , hn are given: w(hi) = γi.
The various factors are then power series (that depend on w) in the
corresponding kappa and psi classes. The expanded version of Hain’s
compact type formula (4) is of this shape: we take S = Z, the vertex
factor is 0 unless all of the incident w(h) sum to zero, and the edge
factor is 0 unless the two w(h) along the edge sum to zero. These
vanishings effectively place the following constraints on w (to get a
nonzero contribution to DRct

g (A)):

(1) w(hi) = ai for i = 1, 2, . . . , n, where hi is the ith leg;
(2) w(h) + w(h′) = 0 if {h, h′} is an edge;
(3)

∑
h→v w(h) = 0 for each vertex v.

We say w is balanced (with respect to A) if it satisfies these constraints.
In other words, w is a flow on Γ with sources/sinks at the legs (with
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specified values given there by A). When Γ is a tree, there is a unique
such balanced w and we recover the w(h) used in (4).

From this perspective it is natural to just try to take (4) and extend
it to be a Givental-type sum over arbitrary graphs (not just trees),
but then there will be infinitely many choices of w and the resulting
infinite sums will be nonconvergent. Moreover, careful comparison with
the exact form of Givental’s R-matrix action suggests that the vertex

factor should contribute a total factor of something like “|Z|−h
1(Γ)”.

Note that the set of balanced w is a torsor over H1(Γ;Z) ∼= Zh1(Γ), so
this factor feels like some sort of infinite averaging procedure.

3.4. Divergent averages. Returning to the simplest non-tree case,
the graph with one vertex and one loop, matching things up with (3)
would then require making sense of the “infinite average” identity

(5)
1

|Z|
∑
c∈Z

c2k = B2k.

This is reminiscent of the zeta regularization sum

∑
c≥1

c2k−1 = ζ(1− 2k) = −B2k

2k
,

but there is no obvious way to make sense of this similarity. More-
over, more complicated graphs require much more complicated diver-
gent sums; for example, a graph with two vertices, a double edge be-
tween them, and one leg on each vertex gives rise to infinite sums like

(6)
1

|Z|
∑

c+d=a

c2kd2l

which must be interpreted.

3.5. Interpolating finite rank CohFTs. The problem with writing
down a double ramification cycle formula of this type is clearly that
the state space is infinite-dimensional. If we replace Z with Z/rZ ev-
erywhere then there is no difficulty with writing down a similar-looking
finite rank CohFT. The result might be something like the following
(the case of a diagonal R-matrix – for an example of a more complicated
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CohFT of this general type, see [15]):∑
Γ stable graph

∑
w:H(Γ)→Z/rZ

balanced

1

|Aut(Γ)|
(ξΓ)∗

[
1

rh1(Γ)

n∏
i=1

exp(Fw(hi)(ψhi
))

·
∏

e={h,h′}∈E(Γ)

1− exp(Fw(h)(ψh) + Fw(h′)(ψh′))

ψh + ψh′

]
,

for power series Fa(Z) for a ∈ Z/rZ with F0(Z) = 0 and F−a(−Z) =
−Fa(Z).

If we take Fa(Z) = 1
2
a2Z for − r

2
< a ≤ r

2
then this CohFT starts

to look very much like the expanded version of Hain’s formula, (4).
In fact, if Γ is a tree then the Γ-term in this sum agrees with that in
Hain’s formula for all sufficiently large r. So it is tempting to try to
take the limit as r → ∞ of these CohFTs. But this isn’t quite right:
the r-version of the left side of (5) is then

1

r

∑
− r

2
<c≤ r

2

c2k.

This certainly doesn’t converge as r → ∞. However, if we restrict to
even r then it is polynomial in r, and if we examine the coefficients of
this polynomial then we see that B2k, the desired value, is the constant
coefficient in r.

This suggests a potential interpretation even of more complicated
sums like (6):

1

|Z|
∑

c+d=a

c2kd2l =
1

|Z/0Z|
∑

c,d∈Z/0Z
c+d=a (mod 0)

c2kd2l

:=

[
1

|Z/rZ|
∑

c,d∈Z/rZ
c+d=a (mod r)

c2kd2l

]
r=0

,

where c and d must be interpreted inside c2kd2l as elements of Z via
some choice of mod r representatives (we used −r/2 + 1, ..., r/2 before
but 0, . . . , r − 1 will give the same final answer) and setting r = 0 at
the end is done by polynomial interpolation.

3.6. Geometric interpretation from (k/r)-spin structures. An
(k/r)-spin structure on a smooth curve C with marked points pi and
weights ai is a choice of line bundle L on C such that L⊗r ≡ ω⊗kC (a1p1 +
· · · + anpn). If we take k = 0 and assume the weights ai sum to zero
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then for any positive r any smooth curve will have such “rth root struc-
tures.” But we can also interpret this construction as meaningful when
r = 0, when we get that a curve only admits a (0/0)-spin structure if it
is in the double ramification locus. This observation gives a vague geo-
metric idea for what it might mean to think of the double ramification
cycle as given by specializing some parameter r to 0.

4. The double ramification cycle formula

We can now state the main result of [11], the double ramification
cycle formula:

Theorem 1 ([11]). DRg(A) is the codimension g part of∑
Γ stable graph

1

|Aut(Γ)|
(ξΓ)∗

[
1

|Z|h1(Γ)

∑
w:H(Γ)→Z
balanced

n∏
i=1

exp
(1

2
a2
iψhi

)

·
∏

e={h,h′}∈E(Γ)

1− exp(−1
2
w(h)w(h′)(ψh + ψh′))

ψh + ψh′

]
,

where formal expressions of the form

1

|Z|h1(Γ)

∑
w:H(Γ)→Z
balanced

P ({w(h)})

(for P a polynomial) are evaluated by setting r = 0 in the corresponding
r-polynomial

1

rh1(Γ)

∑
w:H(Γ)→{0,1,...,r−1}

balanced mod r

P ({w(h)}).

The combinatorial result (necessary for this theorem statement to
make sense) that the expression in the final line is in fact a polynomial
in r (for r sufficiently large) was proved in [11, Appendix A].

The proof of Theorem 1 in [11] follows some of the motivation in
Section 3. We first explain the meaning of the additional r parame-
ter. For each r > 0, let P1[r] denote the projective line with a BZr

orbifold point at 0. One can then use C∗-localization on the moduli
space of relative stable maps to P1[r]/{∞} to obtain complicated re-
lations that entangle double ramification cycles, classes coming from
moduli of (0/r)-spin curves (discussed briefly in the case of smooth
curves in Section 3.6), and other basic tautological classes. The rele-
vant (0/r)-spin classes were previously computed by Chiodo [4] using
Grothendieck-Riemann-Roch.
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These localization relations are too difficult to study effectively for
specific values of r, but it turns out that they have polynomial de-
pendence on r. Taking the constant term in r simplifies them greatly:
most of the terms vanish, and the only remaining terms are a single
double ramification cycle and the r = 0 interpolation of certain classes
written in terms of the Chern characters of the pushforward of the uni-
versal rth root line bundle on the moduli space of (0/r)-spin curves.
Chiodo’s formula [4] for these Chern characters gives that these classes
are CohFTs with formulas of the type described in Section 3.5. The
power series in psi classes appearing in these formulas do not look ex-
actly like those appearing in Theorem 1, but they have the same r = 0
interpolation. (In the language of Section 3.5, the power series Fa(Z)
will be congruent to 1

2
a2Z mod r.) The result is a proof of Theorem 1.
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