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Chapter 1

Introduction

Gromov-Witten theory can be viewed as the study of the moduli stack M g,n(X, β) of sta-
ble maps from curves of genus g with n marked points to a smooth projective variety X
representing a homology class β ∈ H2(X). Via obstruction theory, one can construct a
virtual class [M g,n(X, β)]vir ∈ H∗(M g,n(X, β)), and then the Gromov-Witten invariants of
X are the intersections of [M g,n(X, β)]vir with products of certain tautological classes in
H∗(M g,n(X, β)). These classes come in two types. First, for each i there is a descendent
class τk(γ) = c1(Li)

k ev∗i (γ), where Li is the line bundle of cotangent lines over the ith
marked point and ev∗i (γ) is the pullback of a class on X under the evaluation map at the
ith marked point. Also, there are the Hodge classes λk = ck(E) for 1 ≤ k ≤ g, where E is
the Hodge bundle of 1-forms on the source curve.

We treat Gromov-Witten theory as a family of linear functionals

〈·〉Xβ : A′[~, ~−1]→ Q,

where A′ is a certain polynomial algebra parametrizing the product of insertion classes and
the variable ~ serves to indicate the genus of the invariant. We often will permit the source
curve to be disconnected, yielding the disconnected Gromov-Witten theory of X, which uses
the notation 〈·〉X,•β . For all the relevant definitions and general background on Gromov-
Witten theory, see Chapter 2.

When X is a point, Gromov-Witten theory reduces to the intersection theory of tautolog-
ical classes on M g,n, which is a classical subject of study. When X is a curve, Gromov-Witten
theory can be related to Hurwitz theory, which counts the number of branched covers of a
fixed curve with a given ramification type. Because of this, there are close ties to represen-
tation theory: see the work of Okounkov and Pandharipande in [18]. When X is of higher
dimension, many Gromov-Witten invariants can be interpreted enumeratively as counting
the number of curves on X satisfying certain conditions. Thus in each case, these rational
invariants are of great interest and are relevant to an amazing variety of areas of mathemat-
ics. There are also numerous connections to theoretical physics, which has motivated many
mathematical conjectures in the subject.

One of the most important of these conjectures is due to Katz, Klemm, and Vafa ([12],
or see Conjectures 1 and 2 in [14] for a mathematical treatment). Let X be a K3 surface;
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that is, X is a smooth projective surface that is simply connected and has trivial canonical
class. Via string-theoretic calculations, Katz, Klemm, and Vafa arrived at conjectural values
for the invariants

〈λg〉Xβ,g.

The KKV conjecture is described in greater detail in Chapter 5.
It is difficult to compute invariants of a K3 surface directly. The most promising approach

seems to be the recent work of Maulik and Pandharipande ([13]) relating the Gromov-Witten
theory of a K3 surface to that of an elliptic curve. This suggests that it would be useful
to understand the elliptic curve invariants better, and that will be the primary focus of
this thesis. However, Chapter 5 contains a brief exposition of this elliptic connection and
performs the computations necessary to verify the KKV conjecture for g ≤ 3.

One important feature shared by the elliptic and K3 invariants is that they can both
be interpreted as Fourier coefficients of quasimodular forms. A quasimodular form can be
thought of as a holomorphic function on the upper half-plane which almost satisfies the
usual modular transformation property – see Chapter 4 for a definition. The algebra of
quasimodular forms QM∗ turns out to be the free polynomial algebra Q[E2, E4, E6] generated
by the first three Eisenstein series.

We can obtain quasimodular forms from invariants on elliptic curves by summing over
different choices for the curve class β, which must be some nonnegative integer multiple of
the fundamental class ω. Thus define

〈·〉E : A′[~]→ QM∗

by

〈I〉E :=
∑
d≥0

〈I〉Edωqd. (1.1)

Work of Okounkov and Pandharipande ([18], [17], [19]) implies that these q-series are indeed
the Fourier expansions of quasimodular forms. A similar definition can be used in the case
of a K3 surface (see Chapter 5), and the quasimodularity follows from the elliptic curve case
and the connection between the two proven by Maulik and Pandharipande in [13].

Although the work of Okounkov and Pandharipande provides an algorithm for computing
any elliptic invariant, this algorithm is quite difficult to employ in practice. Chapter 3 is
devoted to describing this algorithm and attempting to make it as nice as possible. We define
“negative descendent” insertions τk(γ) with k < 0 and explain how to write the Hodge classes
in terms of these insertions; informally (see Corollary 3.4.2), we can write

chk =
Bk+1

(k + 1)!

∑
i∈Z

(−1)i(τi(1)τk−1−i(ω) + τi(α)τk−1−i(β)), (1.2)

where chk is the kth Chern character of the Hodge bundle, Bk+1 is a Bernoulli number, and
α, β are specific elements of H1(E).

Chapter 4 contains the primary results of this thesis. We attempt to fully exploit the
quasimodularity of the elliptic invariants (1.1). Any quasimodular form can be uniquely
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written as a polynomial in the quasimodular Eisenstein series E2 with modular coefficients;
thus the differential operator d

dE2
completely encodes the information of how far from being

modular a given quasimodular form is. Surprisingly, applying this operator to an elliptic
invariant is the same thing as multiplying the insertion by a formal infinite sum resembling
(1.2); informally (see Theorem 4.2.1), we can say that

d

dE2

= − 1

24

∑
i∈Z

(−1)iτi(1)τ−i(1).

This is an extremely useful result for two reasons. First, it can be used to prove that
certain elliptic invariants which would be very difficult to compute in full are modular forms,
not just quasimodular forms. Second, we can apply the Ramanujan bounds for Fourier
coefficients of cusp forms to obtain asymptotics for the coefficients of these elliptic invariant
quasimodular forms, which are simply the usual Gromov-Witten invariants of given degrees.
The following example demonstrates both of these types of results:

Theorem 4.4.2. The elliptic invariant 〈λg−1τg−1(ω)〉 is modular for any g ≥ 1. Moreover,
the individual coefficients satisfy

〈λg−1τg−1(ω)〉Edω =
g!

(2g)!2g−2
σ2g−1(d) + O(dg−

1
2

+ε)

for all ε > 0.

The strength of these asymptotics motivates conjectures that asymptotic expansions such
as those given by Theorem 4.4.2 are sometimes actually exact. In this case, this is equivalent
to saying that the elliptic invariant is a scalar multiple of an Eisenstein series.

Conjecture 4.4.3. For any g ≥ 1,

〈λg−1τg−1(ω)〉E =
g!

2g−1
C2g.

In general, all genus g elliptic invariants containing the Hodge factor λg−1 seem to exhibit
similar behavior.

Theorem 4.4.4. Let I ∈ A′ be any monomial in the Hodge classes and the elliptic descendent
invariants and suppose that g ≥ 1. Then there exists C ∈ Q and e ≥ 0 such that

〈λg−1I〉Eg,dω = Cdeσ2g−1(d) + O(de+g−
1
2

+ε)

for any ε > 0. If I = τk1(ω) · · · τkm(ω)τkm+1+1(1) · · · τkn+1(1) with k1, . . . , km, km+1+1, . . . , kn+
1 ≥ 1 and k1 + . . .+ kn = g − 1, then e = m− 1 and

C =
(2g + n− 3)!

∑m
i=1(2ki + 1)

22g−2(2g +m− 2)!
∏n

i=1(2ki + 1)!!
,

where (2ki + 1)!! = 1 · 3 · · · (2ki + 1).

We conjecture that the asymptotic expansions given by Theorem 4.4.4 are also always
exact; see Conjecture 4.4.5. Thus our methods suggest tantalizingly simple formulas for
many elliptic invariants. However, our methods are only sufficient to prove these results
asymptotically.
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Chapter 2

Gromov-Witten preliminaries

2.1 Moduli stacks of stable maps and Gromov-Witten

theory

We will not go through most of the details of the definitions in this chapter. For one reference
on the subject, see Part 4 of [11].

The moduli stack of stable curves of genus g with n marked points is denoted M g,n.
A point [C, p1, . . . , pn] ∈ M g,n describes a connected nodal algebraic curve C (over C) of
arithmetic genus g with n distinct nonsingular marked points p1, . . . , pn and no infinitesimal
automorphisms. This moduli stack is well-known to be smooth of dimension 3g − 3 + n.

Remark. All the spaces and fundamental classes in this thesis will be defined algebraically
and thus will have even real (cohomological) dimension; we will always describe them as
“being of dimension” half this dimension. However, cohomology classes of odd grading will
still be considered at times. We use the word “grading” rather than “dimension” to indicate
this actual cohomological dimension.

Similarly, given a smooth projective variety X and a homology class β ∈ H2(X), one
can define the moduli stack M g,n(X, β) of stable maps to X from curves of genus g with
n marked points. This moduli stack is less nice in general and tends not to be of pure di-
mension. However, there is a naturally defined “virtual fundamental class” [M g,n(X, β)]vir ∈
H2e(M g,n(X, β),Q). This class will be of grading twice the “expected dimension” of the
moduli stack, which is

e = (3− dimX)(g − 1) + n+

∫
β

c1(X). (2.1)

Note that this expected dimension is the same as the actual dimension when X is a point,
since then M g,n(X, 0) = M g,n.

We will not give the obstruction-theoretic construction of the virtual class in this paper;
see section 5.3 of [16] for the necessary details.

Gromov-Witten invariants are defined by intersecting [M g,n(X, β)]vir with certain natu-
rally defined cohomology classes on M g,n(X, β). The simplest such classes are obtained by
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pulling back classes on X along the evaluation maps ev1, ev2, . . . , evn : M g,n(X, β) → X
corresponding to the n marked points. Thus for any γ1, γ2, . . . , γn ∈ H∗(X), we have the
“simple” Gromov-Witten invariant∫

[Mg,n(X,β)]vir

ev∗1(γ1) ev∗2(γ2) · · · ev∗n(γn).

When X is a surface, these simple Gromov-Witten invariants can usually be interpreted
enumeratively as counting the number of curves on X with certain properties. We give two
examples illustrating this interpretation and the complexity of the resulting counts:

Example. Let X = P2 and let β = d[H] for [H] ∈ H2(P2) the class of a hyperplane divisor
and d a positive integer. Let n = 3d−1. For each i, let γi = [p] ∈ H4(P2) be the fundamental
class. Then the genus 0 invariant

Nd :=

∫
[M0,n(P2,d[H])]vir

ev∗1([p]) · · · ev∗3d−1([p])

can be interpreted enumeratively as the number of rational degree d curves on P2 pass-
ing through 3d − 1 generic points. It turns out that these counts satisfy the complicated
recurrence

Nd =
∑

d1+d2=d

Nd1Nd2

(
d2

1d
2
2

(
3d− 4

3d1 − 2

)
− d3

1d2

(
3d− 4

3d1 − 1

))
for d > 1 (see Theorem 25.1.1 of [11]).

Example. Let X be a K3 surface; that is, X is a smooth simply connected projective surface
with trivial canonical class. Let β ∈ H2(X) be a primitive class in the Picard lattice with
β2 = 2h − 2 for some h ≥ 0. The normal virtual class in this case turns out to be zero,
since X can be deformed (in the symplectic category) such that it does not contain any
curves. To obtain nontrivial invariants, one can define a “reduced” virtual fundamental class
[M g,n(X, β)]red of dimension one greater than the ordinary expected dimension g − 1 + n
given by (2.1). Then we can consider the reduced invariants

agh :=

∫
[Mg,g(X,β)]red

ev∗1([p]) · · · ev∗g([p]).

These invariants too can be interpreted enumeratively as counting the number of genus g
curves on X with a given number of nodes (corresponding to the parameter h) that pass
through g generic points. Bryan and Leung ([2]) proved that these counts are given by the
quasimodular generating functions

∑
h≥0

aghq
h =

(∏
k≥1

(1− qk)−24

)(∑
n≥1

nσ1(n)qn

)g

.

The methods used to prove this result will be explained in Chapter 5.
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2.2 Cotangent lines and the Hodge bundle

The two examples at the end of the previous section demonstrate that even the simplest
of Gromov-Witten invariants can be interesting and complicated. However, we will wish to
consider insertions in the integrals that are more general than the simple evaluation classes
pulled back from the target variety X. For this reason, we now describe certain natural
vector bundles on M g,n(X, β) and their Chern classes. These bundles will be pullbacks of
bundles on the moduli space of curves M g,n along the “forgetful map” M g,n(X, β) → M g,n

that sends a map to the stabilization of the source curve. In other words, the following
constructions will not depend on the maps to X, unlike the evaluation classes ev∗i (γ).

First, for each marked point we can take the cotangent space to the source curve at
the specified point; this describes line bundles Li for 1 ≤ i ≤ n, where the fiber over a
moduli point [C, p1, . . . , pn] is T ∗C,pi . The first Chern class of this bundle is denoted by

ψi = c1(Li) ∈ H2(M g,n(X, β)).
Second, the Hodge bundle E is a rank g vector bundle with fiber H0(C, ωC) over the

moduli point [C, p1, . . . , pn], where ωC is the dualizing sheaf of C. The Hodge classes are
then defined as the Chern classes λk = ck(E) ∈ H2k(M g,n(X, β)) for 1 ≤ k ≤ g. These
classes satisfy relations proven by Mumford in [15]:

(1 + λ1t+ . . .+ λgt
g)(1− λ1t+ . . .+ (−1)gλgt

g) = 1. (2.2)

Although the Hodge classes λk tend to appear more naturally, it is often easier to work
with the Chern characters of the Hodge bundle, which are denoted by chk := chk(E) and are
related to the Chern classes λk by

1 + λ1t+ · · ·+ λgt
g = e

∑
k≥1(k−1)! chk t

k

.

The Mumford relation (2.2) is thus equivalent to the vanishing of the even Chern characters
ch2k.

It is convenient to define the Hodge algebra to be the polynomial algebra

H := Q[ch1, ch3, . . .]

in formal symbols corresponding to the odd Chern characters. This algebra is not genus-
specific, so we define classes λk ∈ H by∑

k≥0

λkt
k = e

∑
k≥1(k−1)! chk t

k

,

and note that these formal Hodge classes satisfy the Mumford-type relation(∑
k≥0

λkt
k

)(∑
k≥0

λk(−t)k
)

= 1.
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2.3 General Gromov-Witten invariants and the Vira-

soro conjectures

The most general type of Gromov-Witten integral that we will consider is given by inter-
secting a virtual fundamental class (or the reduced fundamental class in the case of a K3
surface) with a product of pullbacks of cohomology classes on X and powers of ψ-classes at
the marked points, and possibly also a polynomial in the Hodge classes. In the case when
there is no Hodge factor, this is known as a descendent invariant. The descendent classes
are the products ψki ev∗i (γ), for which we use the notation τk(γ) (leaving out the subscript
i): we let

〈Λτk1(γ1) · · · τkn(γn)〉Xg,β :=

∫
[Mg,n(X,β)]vir

Λψk11 · · ·ψknn ev∗1(γ1) · · · ev∗n(γn)

be the most general form for an invariant, where Λ is an element of the Hodge algebra H,
k1, . . . , kn are nonnegative integers, and γ1, . . . , γn are cohomology classes on X.

We introduce a little terminology to describe the factors in the above invariant, called
insertions. The factor τk(γ) is called a descendent insertion or a descendent of γ, and γ
itself is an evaluation class. We refer to any element of the Hodge algebra H as a Hodge
insertion, although we will primarily consider monomials in the Hodge classes λk or the
Chern characters chk.

Let B be a basis for the cohomology of X consisting of elements of pure Hodge grading,
so all γ ∈ B belong to Hpγ ,qγ (X) for some pγ and qγ. Let A = A∗ denote the “supercom-
mutative” graded polynomial algebra over Q on the formal symbols τk(γ) for k ≥ 0 and
γ ∈ B, where such a symbol has grading 2k − 2 + pγ + qγ. Here the only relations are the
supercommutativity relations

[a, b] := ab− (−1)mnba = 0

for a ∈ Am and b ∈ An. For odd n, we call the descendents of γ ∈ Hn(X) odd classes; such
elements are the source of noncommutativity in A. Let A′ = A ⊗Q H denote the graded
algebra formed by adjoining the Hodge algebra to A, where λk and chk are taken to have
grading 2k. We will also view A[~, ~−1] and A′[~, ~−1] as graded algebras, where the variable
~ has grading 2(dimX − 3).

Then we can formally view Gromov-Witten theory as a collection of linear maps 〈·〉Xβ :
A′[~, ~−1] → Q; here the coefficient of ~g−1 is evaluated in genus g. Note that this map
vanishes on all components of grading other than x := 2

∫
β
c1(X) for dimensional reasons by

(2.1). We will only considerX of dimension other than 3, so ~ will have nonzero grading. This
means that there is a natural homogenization map A′ → A′[~, ~−1] with image in A′[~, ~−1]x,
defined by multiplying elements in A′x−2(dimX−3)n by ~n for each n ∈ Z and annihilating

elements of gradings not of this form. We will also use the notation 〈·〉Xβ : A′ → Q to
indicate the composition of this homogenization map with the invariant function defined
above. In other words, we will often regard the genus of an invariant as being determined by
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the insertion; when we want to emphasize (usually for geometric reasons) that the invariant
is being computed using curves of a given genus or that the genus is nonconstant in a relation
between invariants, we will either employ the variable ~ or add g as an additional subscript.

We will also want to consider the disconnected Gromov-Witten theory of a smooth pro-
jective variety X; this is defined in the same way as the connected theory, except that one
uses moduli spaces of disconnected curves and maps from disconnected curves (recall that
the arithmetic genus of the disjoint union of two curves of arithmetic genus g1 and g2 is
g1 + g2− 1). We indicate that an invariant is disconnected with a dot, so we also have linear
maps 〈·〉•β : A′[~, ~−1]→ Q.

The Virasoro constraints were originally described as linear operators annihilating a
certain generating function containing all of the descendent invariants. We take the dual
viewpoint and instead view the Virasoro constraints as a certain family of linear operators
Vk : A[~, ~−1] → A[~, ~−1]; then the Virasoro conjecture (for the pair (X, β)) is that the
composition of Vk with 〈·〉•β is trivial. The resulting relations between invariants permit the
removal of the insertions of the descendents of 1 from any descendent invariant. The Virasoro
conjecture has been proven in numerous special cases; we will be primarily concerned with
the case dimX = 1, which was proven by Okounkov and Pandharipande in [19]. We will
describe the Virasoro relations in the case X = E is an elliptic curve in Section 3.3.

The work of Faber and Pandharipande in [9] can be interpreted as describing operators
Yk : A′[~, ~−1] → A′[~, ~−1] for odd k ≥ 1 such that their composition with 〈·〉•β is again
trivial; the resulting relations permit the removal of all Hodge classes. Again, we will describe
these operators in the elliptic curve setting in Section 3.4.
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Chapter 3

The Gromov-Witten theory of an
elliptic curve

3.1 Introduction

In a sequence of papers ([18], [17], [19]), Okounkov and Pandharipande developed an al-
gorithm for computing any descendent invariant of a curve. This algorithm is particularly
nice in the case of an elliptic curve, but it still requires several nontrivial steps and is quite
difficult to use in any practical setting. We will give a slightly more elegant and usable
formalization of this algorithm. To begin with, though, we must define some basic notation.

Let E be an elliptic curve; for convenience, we fix a basis B = {1, α, β, ω} for the co-
homology of E using the Hodge grading as follows. Let α ∈ H10(E) and β ∈ H01(E) be a
symplectic basis for H1(E) (so α · β = 1 = −β · α), and let ω ∈ H2(E) be the Poincaré dual
of a point. These are (along with 1) the classes we will be pulling back from E.

The notation that we will use for elliptic curve invariants will differ slightly from that
of the previous section. Since we are primarily just considering elliptic curve invariants, we
omit the superscript E. Also, the possibilities for a curve class β correspond to nonnegative
integers (the degree of the map), and we will sum these invariants into a generating function:

〈I~g−1〉 = 〈I〉g :=
∑
d≥0

〈I〉Eg,dωqd

We will often leave out the notation for the genus and view the genus g as determined by
the dimension of the insertion I or by a formal factor ~g in the insertion. Thus we view the
connected Gromov-Witten theory of an elliptic curve as a linear map

〈·〉 : A′ → Q[[q]].

Example. For d > 0, the invariant 〈τ0(ω)〉E1,dω can be interpreted as counting the number of
degree d maps from some elliptic curve to E. Since all such maps are isogenies, this is the
same as counting index d sublattices of Z2, of which there are σ1(d). Combined with the
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d = 0 invariant, this yields that

〈τ0(ω)〉 = − 1

24
+
∑
d>0

σ1(d)qd

is the weight 2 Eisenstein series. This is an example of the general fact that all elliptic curve
invariants 〈I〉 are quasimodular forms.

In the disconnected case, we adopt the convention

〈I〉•g :=
∏
k≥1

(1− qk)
∑
d≥0

〈I〉E,•g,dωq
d.

Here the extra q-series factor serves the purpose of cancelling out the contribution from
connected components of the domain curve which have genus 1 and no marked points. It is
also the case that all disconnected invariants 〈I〉• are quasimodular forms. In fact, one can
easily express the disconnected invariants in terms of the connected invariants by means of
the following basic result:

Proposition 3.1.1. Let I = λl1 · · ·λlnτk1(γ1) · · · τkm(γm) be an arbitrary elliptic insertion.
Then

〈I〉• =
∑

{1,...,m}=tI∈SI

∑
∑
I∈S bI,j=lj

∏
I∈S

〈λbI,1 · · ·λbI,n
∏
i∈I

τki(γi)〉,

where the first sum is taken over partitions of the set of descendent factors (into nonempty
parts) and the second sum is over partitions of each Hodge index lj into corresponding parts.

Proof. This relationship between the disconnected and connected invariants will follow from
three observations.

First, the moduli space of stable maps from disconnected curves M
•
g,n(E, dω) is itself

disconnected, and its connected components are indexed by unordered sequences (gi, di)
m
i=1

of the same length m with g1 + · · · + gm = g + m− 1 and d1 + · · · + dm = d, together with
an assignment function from the n marked points to the m indices (which correspond to the
connected components of the source curve). Each such connected component is then simply
a product

∏m
i=1 M gi,ni(E, diω) of connected moduli spaces, where ni is the number of marked

points assigned to part i. The virtual fundamental class also splits as a product of virtual
fundamental classes in this way. The only exception to the above comments is if multiple
connected components have the same genus and no marked points; in this case, one must
quotient out by the group of automorphisms permuting such identical components.

Second, the Chern class λl onM
•
g,n(E, dω) when restricted to such a connected component

splits as a sum

λl =
∑

l1+···+lm=l

m∏
i=1

λ
(i)
li
,

where λ
(i)
li

is a Chern class on the ith factor of the product.
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Finally, we need the easily verified fact that the pure Hodge insertions 〈Λ〉 all vanish
except for

〈1〉 =
∑
d>0

qd
∑

f is a degree d isogeny onto E

1

Aut(f)

=
∑
d>0

σ1(d)

d
qd

=
∑
k>0

log

(
1

1− qk

)
.

Note that this computation is the same as the one for 〈τ0(ω)〉 in the example before this
proposition, except that here the isogenies have nontrivial automorphisms because there are
no marked points.

Now, the product decomposition of the connected components of the disconnected moduli
space and the corresponding virtual classes, along with the product formula for the Hodge
classes, immediately gives the correct formula for

∑
d≥0〈I〉•dωqd except that empty parts

(meaning connected components of the source curve without marked points) are permitted
and terms with duplicated empty parts must be divided by the order of the automorphism
group permuting these terms. But by the above comments about pure Hodge invariants, we
have that the contribution from these empty parts is precisely

e〈1〉 =
∏
k>0

(1− qk)−1,

as desired.

Remark. If the Hodge class in the disconnected invariant of the previous proposition is
expressed in terms of the Chern characters of the Hodge bundle rather than the Chern classes,
then the analogous result holds except that the Chern characters cannot split between the
different connected components.

Remark. It is slightly more complicated to describe how to express connected invariants in
terms of disconnected invariants, so we do not give the general relationship here. However,
most of our results, although stated for the disconnected case, will have analogues in the
connected case via Proposition 3.1.1.

In Section 3.2, we describe the generating functions for the stationary elliptic invariants
that Okounkov and Pandharipande obtained in [18] via Hurwitz theory. In Section 3.3,
we describe the Virasoro constraints that enable the reduction of any descendent invariant
to stationary invariants. In Section 3.4, we describe the relations determined by Faber
and Pandharipande in [9] that permit the removal of Hodge classes from Gromov-Witten
invariants. At each step, we provide a somewhat nicer formalization of this algorithm,
mainly consisting of replacing differentiation operators with “negative descendents” τk(γ)
with k < 0. Finally, in Section 3.5 we consider the example of the invariants 〈chk τl(ω)〉 and
demonstrate our methods.
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3.2 Stationary invariants

The invariants of the form
〈τk1(ω) · · · τkn(ω)〉•

are known as stationary invariants and were computed by Pandharipande and Okounkov
([18]), who related them to Hurwitz numbers counting branched covers of E, which had
previously been computed using representation theory.

Let

Θ(z) = (e
z
2 − e−

z
2 )
∏
k≥1

(1− qkez)(1− qke−z)
(1− qk)2

=

∑
n∈Z(−1)nq

1
2

(n+ 1
2

)2e(n+ 1
2

)z∑
n≥0(−1)n(2n+ 1)q

1
2

(n+ 1
2

)2

be the (essentially unique) genus 1 theta function, normalized for later convenience such
that Θ′(0) = 1. Then for each nonnegative integer n, the n-point correlation function Fn is
defined by the expression

Fn(z1, . . . , zn) :=
∑
σ∈Sn

σ

 det
(

Θ(j−i+1)(z1+···+zn−j)
(j−i+1)!

)
1≤i,j≤n

Θ(z1)Θ(z1 + z2) · · ·Θ(z1 + · · ·+ zn)

 . (3.1)

Here the sum varies over all n! permutations of the indices 1, . . . , n and 1
(−k)!

is taken to be
zero for k > 0; also, F0 = 1.

Although it is not obvious from this definition, Fn can be expanded as a Laurent series
in the zi, so we also formally view Fn as an element of Q((z1, . . . , zn))[[q]]. This is more
transparent in the following interpretation of the n-point correlation function, which is of
great use (and justifies the name).

Theorem 3.2.1. (Theorem 0.5 of [1]) For any n ≥ 1, we have (in the appropriate region of
convergence) ∑

µ

∏n
k=1

∑
i≥1 e

(µi−i+ 1
2

)zkq|µ|∑
µ q
|µ| = Fn(z1, . . . , zn),

where the sums are over all partitions µ = (µ1 ≥ µ2 ≥ · · · = 0) and |µ| =
∑

i µi is the size
of µ.

Since
∑

i≥1 e
(µi−i+ 1

2
)z has a meromorphic expansion around 0 of the form 1

z
+ O(z), stan-

dard analytic continuation arguments give that the above theorem implies that Fn(z1, . . . , zn)
can be viewed as an element of 1

z1···znQ[[z1, . . . , zn, q]].
Okounkov and Pandharipande proved the following theorem (Theorem 5 of [18]):

Theorem 3.2.2. The n-point stationary invariants of an elliptic curve are the coefficients
of Fn. More precisely, for any nonnegative integers k1, . . . , kn, we have

〈τk1(ω) · · · τkn(ω)〉• = [zk1+1
1 · · · zkn+1

n ]Fn(z1, . . . , zn).

13



One consequence of this theorem is that all stationary invariants are quasimodular forms.
The reason for this is that Θ(z) can be rewritten in terms of certain normalized Eisenstein
series C2k (see Chapter 4):

Θ(z) = ze−
∑
k≥1 C2kz

2k

.

We will see in the next two sections that any elliptic curve invariant can be reduced to the
stationary case, so this will imply that all invariants of an elliptic curve are quasimodular
forms.

Because the generating function Fn contains some terms (with negative powers of some
zi) whose coefficients are not described by the above result, it turns out to be natural to
make the following definition (first made in [18]):

The formal insertion τ−2(ω) (of grading −4) can be removed from a stationary discon-
nected invariant (increasing the genus by 1). In other words,

〈τk1(ω) · · · τkn(ω)τ−2(ω)~g−1〉• = 〈τk1(ω) · · · τkn(ω)~g〉•.

If we employ Proposition 3.1.1 to relate the connected and disconnected cases, then we
can see that it should be equivalent to say that all stationary connected invariants containing
τ−2(ω) vanish except for 〈τ−2(ω)~−1〉 = 1.

If we set all stationary invariants containing some formal insertion τk(ω) with k < 0, k 6=
−2 equal to zero, then we can write:

Proposition 3.2.3. The n-point function Fn satisfies the identity

Fn(z1, . . . , zn) =
∑

k1,...,kn∈Z

〈τk1(ω) · · · τkn(ω)〉•zk1+1
1 · · · zkn+1

n .

Proof. By Theorem 3.2.2, the coefficients of zk1+1
1 · · · zkn+1

n on each side are the same when
all the ki are positive. Expanding the “average over partitions” expression for Fn provided
by Theorem 3.2.1 as a Laurent series about 0, we can see that the only other monomials (in
the zi) that occur in the expansion of Fn have all of the ki positive except for some which
are −2. By the definition of the formal stationary invariants, it only remains to check that
[zk1+1

1 · · · zkn−1+1
n−1 z−1

n ]Fn = [zk1+1
1 · · · zkn−1+1

n−1 ]Fn−1, and this again follows from Theorem 3.2.1.

3.3 Non-stationary descendents

Okounkov and Pandharipande ([19]) described how to evaluate all descendent invariants by a
two-step reduction to the case of stationary invariants. First, insertions of the form τk(1) are
removed via the Virasoro constraints, and then the odd classes τk(α), τk(β) can be removed
from the resulting invariants (which just involve stationary classes and odd classes).

Okounkov and Pandharipande present this constraints in [19] as linear operators that
annihilate the exponential generating function for descendent invariants; as explained earlier,
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we take the dual viewpoint and view these operators as maps A → A which annihilate the
Gromov-Witten map A → Q[[q]] by precomposition.

Recall that B = {1, α, β, ω} is our chosen basis for the cohomology of E and γ ∈ Hpγqγ (E)
for γ ∈ B.

For k ≥ 0, the Virasoro operator Vk : A → A is given by

Vk = −τk+1(1) +
∑
l≥0
γ∈B

(
k + l + pγ
k + 1

)
τk+l(γ)

d

dτl(γ)
.

For k = −1, an additional term is needed to account for the fact that k+ l is negative when
l = 0:

V−1 = −τ0(1) +
∑
l≥1
γ∈B

τl−1(γ)
d

dτl(γ)
+ ~

(
d

dτ0(1)

d

dτ0(ω)
+

d

dτ0(β)

d

dτ0(α)

)
.

Here the factor of ~ in the final term indicates that removing τ0(1) can actually cause the
genus of the invariant to increase.

Okounkov and Pandharipande also considered a similarly defined family of pairs of op-
erators Wk,W k : A → A for k ≥ −1, given by

Wk = −τk+1(β) +
∑
l≥0
γ∈B

(
k + l + pγ
k + 1

)
τk+l(β ∪ γ)

d

dτl(γ)

and

W k = −τk+1(α) +
∑
l≥0
γ∈B

(
k + l + qγ
k + 1

)
τk+l(α ∪ γ)

d

dτl(γ)
.

These operators provide many useful relations between disconnected invariants by the
following result (Theorems 3 and 4 in [19]):

Theorem 3.3.1. For all k ≥ −1 and I ∈ A, 〈VkI〉• = 〈WkI〉• = 〈W kI〉• = 0.

Let S be the subalgebra of A generated by the stationary insertions. Then it is easily
seen that S and the images of the Vk,Wk, and W k operators span A, so Theorem 3.2.2
together with Theorem 3.3.1 determine all descendent invariants of an elliptic curve.

In practice, though, it is usually easier to apply the following result than to remove the
non-stationary insertions one by one using the above operators.

Proposition 3.3.2. For any k1, . . . , kn ≥ 0 and γ1, . . . , γn ∈ B, we have

〈τk1(γ1) · · · τkn(γn)〉• =

〈 ∑
{1,...,n}=tI∈SI
∪i∈Iγi=±ω

sgn(S)
∏

I={i1,...,im}∈S

(
ki1 + · · ·+ kim
ki1 , . . . , kim

)
τ1+

∑
i∈I(ki−1)(ω)

〉•
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and identically for the connected invariants. The sum is over all partitions of the insertions
such that the classes in each part pulled back from E have product equal to ±ω. Thus this
is the empty sum unless an equal number of the γi are α and β, and in this case the sign
factor sgn(S) is defined to be the sign of the matching between the α-descendents and the
β-descendents.

Proof. We prove this result in the disconnected case; the connected case will then follow
formally using Proposition 3.1.1.

Let 〈τk1(γ1) · · · τkn(γn)〉′ denote the expression on the right side of the proposed identity,
and extend linearly to get another linear map 〈·〉′ : A → Q[[q]]. This map trivially agrees
with 〈·〉• on the stationary subalgebra S, so it will suffice to show that it satisfies the relations
of Theorem 3.3.1. This amounts to the identity(

k1 + · · ·+ kn
k1, . . . , kn

)
=

(
k1 + kn
k1

)(
k1 + · · ·+ kn − 1

k1 + kn − 1, k2, . . . , kn−1

)
+

n−1∑
i=2

(
k1 + ki − 1

k1

)(
k1 + · · ·+ kn − 1

k1 + ki − 1, k2, . . . , k̂i, . . . , kn

)
,

which follows from inspection.

Definition. The insertion on the right side of Proposition 3.3.2 is called the reduction of
the insertion I on the left side, and it is denoted Ired.

Thus Proposition 3.3.2 simply states that 〈I〉• = 〈Ired〉•.
We would like to use Proposition 3.3.2 to extend the above theory to handle arbitrary

formal descendent insertions; in other words, we want to consider τk(γ) for arbitrary k ∈ Z.
We already defined arbitrary stationary invariants in the preceding section, so define

〈τk1(γ1) · · · τkn(γn)〉•

for k1, . . . , kn ∈ Z and γ1, . . . , γn ∈ B by the statement of Proposition 3.3.2. To handle the
negative indices, we introduce the convention that a multinomial coefficient

(
k1+···+kn
k1,...,kn

)
is zero

whenever some ki is negative for i > 1. If k1 is the only negative term, the coefficient is still
nonzero as long as k1 + · · ·+ kn is also negative, and in this case it is given by analytic con-
tinuation of the corresponding ratio of gamma functions. Of course, this convention means
that the ordering of these ki matters, and we order the multinomial coefficients appearing
in our definition as they were ordered in the original insertion.

As a consequence, the negative descendents do not necessarily supercommute with the
other descendents. In order to determine the supercommutators, consider that the only
possible parts involving a negative-subscript descendent that contribute nontrivially to the
resulting stationary invariant are τ−2(ω) and τ−k−1(γ1)τk(γ2) for k ≥ 0 and γ1 ∪ γ2 = ±ω.
We then can easily see that

[τk1(γ1), τk2(γ2)] = δk1+k2,−1(−1)k2(γ1 · γ2), (3.2)
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in the sense that invariants are preserved by supercommuting insertions in this way.
In fact, the same argument shows that the following simpler definition for the negative

descendent symbols leads to the same invariants as the definition above.

Definition. For k ≥ 0 and γ1, γ2 ∈ B such that (k, γ1) 6= (1, ω) and γ1∪ γ2 = εω for ε = ±1,
let the formal descendent symbol τ−k−1(γ1) be defined as a linear operator on A by

τ−k−1(γ1) =

(
(−1)kε

d

dτk(γ2)

)
~.

Also define

τ−2(ω) =

(
1− d

dτ1(1)

)
~.

Disconnected descendent invariants involving these symbols are defined by replacing them
by the corresponding operators and applying the operators to obtain an element of A.

Remark. A corresponding definition can be made in the connected setting such that the re-
lationship described in Proposition 3.1.1 between the disconnected and connected invariants
still holds. However, we do not give the details here because we will be primarily concerned
with disconnected invariants.

Thus the negative descendents are really just new names for the differentiation operators
(with genus change factors ~). The advantage of this definition is twofold. First, operators
such as the Virasoro operators Vk become simpler and more elegant to write down and use.
We can write

Vk =
∑
i∈Z

(−1)i
(

i

k + 1

)
(τi(1)τk−1−i(ω)− τi(α)τk−1−i(β))

Wk =
∑
i∈Z

(−1)i
(

i

k + 1

)
τi(β)τk−1−i(ω)

W k =
∑
i∈Z

(−1)i
(

i

k + 1

)
τi(α)τk−1−i(ω).

Second, as a consequence of the fact that the negative descendent invariants can still be
computed by means of Proposition 3.3.2, the negative descendents can usually be treated
analogously to the normal descendent insertions. For instance, the operators Vk,Wk, and
W k are now naturally defined for all k ∈ Z (here the binomial coefficients should be defined
using gamma functions), not just for k ≥ −1, and it is easily checked that these operators
still satisfy Theorem 3.3.1. In other words, the negative descendents can still be removed
using Virasoro constraints.

3.4 Chern characters

Mumford ([15]) used the Grothendieck-Riemann-Roch formula to express the Chern charac-
ters chk of the Hodge bundle E on M g in terms of certain tautological classes. Faber and
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Pandharipande ([9]) then used this result to describe how to remove insertions of Chern
characters of the Hodge bundle from arbitrary Gromov-Witten invariants. Recall that the
conversion between Chern classes and Chern characters is quite annoying; the relation be-
tween the two is

1 + λ1t+ · · ·+ λgt
g = e

∑
k≥1(k−1)! chk t

k

.

This has the consequence that the following results describing how to remove the chk inser-
tions are not as useful as one might wish for removing the λk insertions.

Recall that A′ is the algebra of insertions of descendent or Hodge type. The operators
Yk : A′[~, ~−1]→ A′[~, ~−1] for k ≥ 1 are defined by

Yk = − chk +

(
Bk+1

(k + 1)!

)
·τk+1(1)−

∑
l≥0
γ∈B

τk+l(γ)
d

dτl(γ)
+ ~−1

k−1∑
i=0

(−1)i(τi(1)τk−1−i(ω)− τi(α)τk−1−i(β))

 .

Here Bk+1 is a Bernoulli number, which are defined by the generating function
∑

n≥0Bnz
n =

z
ez−1

. Note that Yk = 0 for even k, since then chk and Bk+1 both vanish.
Then the result of Faber and Pandharipande (Proposition 2 of [9]) can be stated as

follows:

Proposition 3.4.1. For any insertion I ∈ A′[~, ~−1] and k ≥ 1, 〈YkI〉• = 0.

Using the formalization of the previous section, we can replace the differentiation opera-
tors in Yk by negative descendents to write Yk = − chk + Bk+1

(k+1)!
$k, where

$k = ~−1
∑
i∈Z

(−1)i(τi(1)τk−1−i(ω)− τi(α)τk−1−i(β)).

Since A′ is spanned by A and the image of the Yk operators, Proposition 3.4.1 allows us
to write any Gromov-Witten invariant in terms of descendent invariants:

Corollary 3.4.2. For any odd k1, . . . , km and descendent insertion I ∈ A,

〈chk1 · · · chkm I〉• =

〈
m∏
i=1

Bki+1

(ki + 1)!
$kiI

〉•
.

Note that $k is nontrivial for even k, unlike chk; this will be relevant when constructing
generating functions in the next section, for which it is more natural to remove the Bernoulli
factors.

It is important to note that $k does not commute with the descendent classes, even
though chk does commute. In other words, the informally stated identity

chk =
Bk+1

(k + 1)!
$k

18



should only be treated as an identity of operators (acting on the left). From the supercom-
mutation relations (3.2), we can easily compute that (for odd k)

[τi(γ), $k] = τi+k(γ).

We will tend to try to avoid the confusion between chk ∈ A′ and $k ∈ End(A) by performing
computations in A rather than A′ whenever possible.

3.5 An example

As an example of the formalization in this chapter, we compute 〈chk τl(ω)〉 = 〈chk τl(ω)〉• for
all odd positive integers k and l. We begin by noting that the formal invariants 〈$kτl(ω)〉
(now without a parity restriction on the indices) have a rather simple generating function:
we have

〈$kτl(ω)〉 = 〈$kτl(ω)〉•

=
∑
i∈Z

(−1)i
(
i+ l

i, l

)
〈τk−1−i(ω)τi+l−1(ω)〉•

=
∑
i∈Z

(−1)i
(
i+ l

i, l

)
[zk−ixi+l]F2(z, x)

= [zkxl]F2(z, x− z),

where the final Laurent series is expanded in x/z and z, so 1
x−z = −1

z
− x

z2
− · · · .

To compute these coefficients, it is useful to recall that

1

Θ(z)
=
∑
k

〈τk(ω)〉zk+1

and
Θ′(z)

Θ(z)
=

1

z
−
∑
k

kCkz
k−1,

where the Ck ∈ Q[[q]] are appropriately normalized Eisenstein series (see Chapter 4).
Using the expression (3.1) for F2, we have that

F2(z, x− z) =
Θ′(z)

Θ(z)Θ(x)
+

Θ′(x− z)

Θ(x− z)Θ(x)

=

(
1

z
+

1

x− z

)∑
j

〈τj(ω)〉xj+1 −
∑
i,j

iCi〈τj(ω)〉xj+1(zi−1 + (x− z)i−1).

Note that the first term does not contribute to the coefficients of interest to us, since the
exponent of z is negative there. Taking the coefficient of zkxl in the second term yields the
following result:
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Proposition 3.5.1. The identity

〈chk τl(ω)〉 =
Bk+1

k!

l+1
2∑
i=1

(
2i+ k + 1

k + 1

)
C2i+k+1〈τl−1−2i(ω)〉

holds for all odd positive integers k and l.

In particular, setting k = 2g − 3, l = 1 in Proposition 3.5.1 yields that

〈ch2g−3 τ1(ω)〉 =
B2g−2

(2g − 3)!

(
2g

2

)
C2g. (3.3)

This is actually a modular form, since it is just a renormalized Eisenstein series. In the next
chapter, we will build a general framework for explaining why elliptic invariants such as this
one are modular (and not just quasimodular). In addition, we will see that the fact that this
invariant is an Eisenstein series is a special case of a significantly more general conjecture
(see Conjecture 4.4.5 and Proposition 4.4.6).

In general, we can apply the same procedure used above to interpret 〈$k1 · · ·$knτl(ω)〉 as
the coefficient of zk11 · · · zknn xl in the Laurent expansion of a linear combination of (n+ 1)n−1

linear reparametrizations of the (n+ 1) point correlation function Fn+1. For example,

〈$k1$k2τl(ω)〉 =[zk11 z
k2
2 x

l]((x− z1 − z2)F3(z1, z2, x− z1 − z2) + z1F3(z1 − z2, z2, x− z1)

+ z2F3(z1, z2 − z1, x− z2)).
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Chapter 4

Modularity and asymptotic
expansions

4.1 Quasimodular forms

A modular form of even weight k (on SL2(Z)) is a holomorphic function f on the upper
half-plane (including i∞) satisfying the transformation equation

f

(
az + b

cz + d

)
= (cz + d)kf(z) (4.1)

for all

(
a b
c d

)
∈ SL2(Z).

One important family of examples of modular forms is the Eisenstein series Ek for even
k ≥ 4, which is a weight k modular form with Fourier expansion

Ek = 1− 2k

Bk

∑
n≥1

σk−1(n)qn, (4.2)

where q = e2πiz and Bk is a Bernoulli number.
It is well-known that the graded algebra generated by the modular forms on SL2(Z) is

freely generated by E4 and E6. In particular, all of the higher-weight Eisenstein series are
polynomials in E4 and E6.

One can also define a “weight 2” Eisenstein series E2 by (4.2). This function is not quite
modular, but E2 − 3

πy
does satisfy (4.1) in weight k = 2, where y = Im(z). Because of this,

we call E2 a quasimodular form. In general, we say that an almost holomorphic modular
form (of weight k) is a polynomial in 1

y
with q-series coefficients that satisfies (4.1), and a

quasimodular form (of weight k) is the constant term of such a polynomial. It turns out
(see Proposition 3.5 of [1]) that the graded algebra of quasimodular forms QM∗ is generated
freely by the first three Eisenstein series, so QM∗ = Q[E2, E4, E6]. Thus one way of thinking
about quasimodular forms is as polynomials in E2 with modular coefficients. We will view
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quasimodular forms as interchangeable with their Fourier expansion q-series, so QM∗ is a
subalgebra of Q[[q]].

It is convenient to consider a normalization of the Eisenstein series different from that of
(4.2). For each k ≥ 2, let

Ck := − Bk

k · k!
Ek = − Bk

k · k!
+

2

k!

∑
n≥1

σk−1(n)qn.

The reason for this choice of normalization is the identity

Θ(z) = ze−
∑
k≥1 C2kz

2k

(4.3)

for the theta function discussed in Section 3.2.
As a consequence of this identity, the one-point stationary invariants of an elliptic curve

satisfy ∑
g≥0

〈τ2g−2(ω)〉z2g = e
∑
k≥1 C2kz

2k

and thus can be simply expressed in terms of the Eisenstein series. This fact was used in
Section 3.5.

As the previous example might indicate, we will be primarily interested in quasimodular
forms simply as nice q-series which frequently show up as generating functions. As such, it
is important to note that the “theta differentiation operator” θ := q d

dq
(not to be confused

with the theta function Θ(z)) restricts to a derivation on QM∗ = Q[C2, C4, C6], since there
are the following basic identities:

θC2 = −2C2
2 + 10C4

θC4 = −8C2C4 + 21C6

θC6 = −12C2C6 +
160

7
C2

4 .

(4.4)

4.2 The derivation ∂

In this section, we discuss another important derivation on the algebra of quasimodular forms
QM∗ = Q[C2, C4, C6], namely ∂ := d

dC2
. Since the subalgebra of modular forms is Q[C4, C6],

this derivation has the nice property that ∂f = 0 if and only if f is modular. We will later
use this characterization to prove that certain elliptic curve invariants are actually modular
forms.

Since θ increases weight by 2 by (4.4) and ∂ decreases weight by 2, it is natural to
consider the commutator of these two derivations. Straightforward computation using (4.4)
yields that

[θ, ∂] = 2k (4.5)

as an operator on QMk.

22



The derivation ∂ interacts especially nicely with the elliptic curve invariant formalism of
the previous chapter. Define an infinite sum of formal descendent insertions by

δ := ~−1
∑
i∈Z

(−1)iτi(1)τ−i(1).

Then we have the following result:

Theorem 4.2.1. ∂〈I〉• = 〈δI〉• for any insertion I ∈ A′.

We will need to prove a few preliminary results before approaching this theorem. First,
the n-point correlation function Fn interacts very nicely with the differentiation operator ∂:

Lemma 4.2.2. For any n ≥ 1, we have the identity of formal Laurent series

∂Fn(z1, . . . , zn) = (z1 + · · ·+ zn)2Fn(z1, . . . , zn)

− 2
∑

1≤i<j≤n

(zi + zj)Fn−1(zi + zj, z1, . . . , ẑi, . . . , ẑj, . . . , zn)

in QM∗((z1, . . . , zn)).

Proof. It will be convenient to let

Mn = Mn(z1, . . . , zn) =

(
Θ(j−i+1)(z1 + · · ·+ zn−j)

(j − i+ 1)!

)
1≤i,j≤n

be the matrix appearing in the definition of Fn (see (3.1)). Let mij
n be the entries of Mn, so

mij
n vanishes for i > j + 1.

From (4.3), we have that ∂Θ(z) = −z2Θ(z). Differentiating with respect to z yields

∂
Θ(m)(z)

m!
= −z2 Θ(m)(z)

m!
− 2z

Θ(m−1)(z)

(m− 1)!
− Θ(m−2)

(m− 2)!
.

Applying ∂ to (3.1) and using multilinearity of the determinant then gives

∂Fn(z1, . . . , zn) = (z1 + · · ·+ zn)2Fn(z1, . . . , zn)

− 2
∑
σ∈Sn

σ

( ∑
1≤j≤n

(z1 + · · ·+ zn−j)
detM j

n

Θ(z1) · · ·Θ(z1 + · · ·+ zn)

)

−
∑
σ∈Sn

σ

( ∑
1≤i≤n

detM
(i)
n

Θ(z1) · · ·Θ(z1 + · · ·+ zn)

)
,

where M j
n is the matrix formed by shifting the jth column of M up by one entry and M

(i)
n

is formed by replacing the ith row of M with the (i+ 2)th row of M (or by a row of zeroes
if i+ 2 > n).
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The first of these three terms is the first term of the desired expression, and the last of
the three terms vanishes because M

(i)
n is clearly always singular. Thus it remains to show

that the second term is as desired.
We claim that in fact

n∑
j=1

(z1 + · · ·+ zn−j) detM j
n(z1, . . . , zn) =

n−1∑
l=1

zlΘ(zl + · · ·+ zl) detMn−1(z1, . . . , zl−1, zl + zl+1, zl+2, . . . , zn).

(4.6)

To see this, expand the left-hand side of (4.6) as a polynomial in the nonzero entries of M .
The typical term in this expansion is

±(z1 + · · ·+ zn−j)m
i11
n · · ·minn

n ,

where (i1, i2, . . . , ij + 1, . . . , in) is a permutation of (1, . . . , n) and the sign factor is the sign
of this permutation.

For fixed i1, . . . , in, there are either 0 or 2 possible choices for j that yield such a term.
If j < j′ are the 2 choices, then one must have ij = ij′ . From the vanishing of mij

n for
i > j + 1, we can additionally determine that ik = k + 1 for j ≤ k < j′. For each such k,
mikk
n = Θ(z1 + · · ·+ zn−k), so we can find this monomial in the mij

n on the right-hand side of
(4.6) with l = n− k. Comparing the coefficients of this monomial on each side (and taking
signs into account), we can check that (z1 + · · ·+ zn−j)− (z1 + · · ·+ zn−j′) =

∑
j≤k<j′ zn−k,

so identity (4.6) holds.
Dividing (4.6) by Θ(z1) · · ·Θ(z1 + · · · + zn) and symmetrizing then yields the desired

result.

We also need to compute the commutators of various pairs of the operators δ,$k, Vk,Wk,
and W k.

Lemma 4.2.3. The commutators [δ, Vk], [δ,$l], and [V−1, $l] all vanish (for all k ∈ Z and
odd l ≥ 1). Also, for any I ∈ A, the invariants 〈[δ,Wk]I〉• and 〈[δ,W k]I〉• vanish.

Proof. The first part of this lemma is a completely straightforward computation using the
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supercommutativity relations (3.2). We perform the first calculation as an example:

[δ, Vk] =

[∑
i∈Z

(−1)iτi(1)τ−i(1),
∑
j∈Z

(−1)j
(

j

k + 1

)
(τj(1)τk−1−j(ω)− τj(α)τk−1−j(β))

]

= 2
∑
j∈Z

(−1)j−k(−1)j
(

j

k + 1

)
(−1)k−1−jτk−j(1)τj(1)

= 2
∑
j∈Z

(−1)j+1

(
j

k + 1

)
τk−j(1)τj(1)

=
∑
j∈Z

(−1)j+1

(
j

k + 1

)
τk−j(1)τj(1) +

∑
j∈Z

(−1)k−j+1

(
k − j
k + 1

)
τj(1)τk−j(1)

= 0

because
(
k−j
k+1

)
= (−1)k+1

(
j

k+1

)
.

The second part of this lemma is slightly more complicated, since the two commutator
operators are do not themselves vanish. We will only go through the case involving Wk, since
the other one is identical. An analogous computation to the one performed above yields the
identity

[δ,Wk] = 2
∑
j∈Z

(−1)j+1

(
j

k + 1

)
τj(β)τk−j(1).

Switching back to derivative notation, we see that we need to prove the relation〈∑
j≥0

(
j + k + 1

k + 1

)(
τj+k+1(β)

d

dτj(ω)
+ τj+k+1(1)

d

dτj(α)

)
I

〉•
= 0 (4.7)

for any descendent insertion I.
In order to do this, we apply Proposition 3.3.2 to the resulting descendent invariant and

for each partition of the descendents in the resulting sum, we consider the part containing
the descendent coming from the operator [δ,Wk] of (4.7). This is a subset of the descendent
factors which (replacing the descendent coming from the operator with the descendent re-
moved by the operator) originally either contained one descendent of α, one descendent of
ω, and some number of descendents of 1, or contained two descendents of α, one descendent
of β, and some number of descendents of 1. In either case, there are exactly two different
ways for the operator to act on this subset of the descendent factors, and it is easily checked
that their contributions cancel, yielding the desired vanishing.

We can now give a useful result that essentially states that δ ignores Hodge insertions.
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Proposition 4.2.4. Let Λ ∈ End(A) be any polynomial in $1, $3, . . ., let I ∈ A be a
descendent insertion, and let g ≥ 0. Then 〈δΛI~g−1〉• = 〈ΛI ′~g−1〉• for

I ′ =

~−1

∑
k≥0
γ∈B

τk−1(γ)
d

dτk(γ)


2

+
d

dτ0(ω)
− 2

∑
k≥0

τk+1(1)
d

dτk(ω)

 I.

Proof. First, observe that

I ′ = (δ + ~−1((τ0(1) + V−1)2 − [τ0(1), V−1]− τ0(1)2))I.

Thus
〈ΛI ′~g−1〉• = 〈Λ(δ + ~−1(2V−1τ0(1) + V 2

−1))I~g−1〉•.
The result then follows from using the commutativity of $k with V−1 and δ (see Lemma 4.2.3)
along with the Virasoro constraint for V−1 (Theorem 3.3.1).

We are now ready to prove our main theorem.

Proof of Theorem 4.2.1. We first assume that I is stationary, so let I = τk1(ω) · · · τkn(ω) ∈ S.
The reduction of δI has two parts: those terms coming from the τ0(1)τ0(1) summand of δ
and those coming from the other summands. One can check (using Proposition 4.2.4, for
instance) that

(δI)red =
n∑
i=1

τk1(ω) · · · τki−2(ω) · · · τkn(ω) + 2
∑

1≤i<j≤n

τk1(ω) · · · τki−1(ω) · · · τkj−1(ω) · · · τkn(ω)

− 2
∑

1≤i 6=j≤n

(
ki + kj + 1

ki

)
τki+kj(ω)

∏
l 6=i,j

τkl(ω).

The theorem statement then follows directly from taking the coefficient of zk1+1
1 · · · zkn+1

n in
Lemma 4.2.2.

We now prove the general case. First, note that the commutativity of $k with δ (for
odd k), as proven in Lemma 4.2.3 and used in Proposition 4.2.4, allows us to replace the
Hodge classes by descendent factors using Corollary 3.4.2, so without loss of generality we
can assume that I ∈ A is a descendent insertion.

Now, any descendent insertion can be written in the form

I = S +
∑
k≥−1

(VkAk +WkBk +W kBk), (4.8)

where S ∈ S is stationary, Ak, Bk, Bk ∈ A, and all but finitely many terms are zero. We
have already verified the theorem for S, and the commutativity statements in Lemma 4.2.3
combined with the Virasoro constraints Theorem 3.3.1 imply that

〈δVkAk〉• = 〈VkδAk〉• = 0 = ∂〈VkAk〉•

(and similarly for Wk, W k), so the theorem also holds for the other terms in the decompo-
sition (4.8). The theorem then holds for I by linearity.
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4.3 Asymptotics

As a consequence of the simple bracket relation (4.5), ∂ controls the asymptotics of the
coefficients of a quasimodular form. To see this, suppose that f ∈ QMk is a weight k
quasimodular form, and note that f can be (uniquely) written in the form

f = f0 + θf2 + · · ·+ θ
k
2
−1fk−2, (4.9)

where each fm is a modular form of weight k −m for 0 ≤ m ≤ k − 4 and fk−2 is a weight 2
quasimodular form (and thus a scalar multiple of E2).

Let am be the constant term of fm, and let

f≈ = a0Ek + a2θEk−2 + · · ·+ ak−2θ
k
2
−1E2.

Observe that f − f≈ is a linear combination of derivatives of cusp forms, so the Ramanujan
bounds (proven by Deligne in [4]) give that the dth Fourier coefficient of f −f≈ is O(d

k−1
2

+ε)
for any ε > 0. In combination with the exact formula for the Fourier expansion of f≈, we
have that

[qd]f =

k
2
−1∑
i=0

a2i

(
−2k − 4i

Bk−2i

)
diσk−2i−1(d) + O(d

k−1
2

+ε). (4.10)

We now return to the derivation ∂. The coefficients of the asymptotic expansion (4.10)
can be obtained by taking the constant term of ∂if for each i:

Lemma 4.3.1. Let f ∈ QMk be a weight k modular form and let a0, a2, . . . , ak−2 be defined
as above. Then for 0 ≤ i ≤ k

2
− 1,

[q0]∂if = (−2)i(i!)(k − 2i)(k − 2i+ 1) · · · (k − i− 1)a2i.

Proof. Suppose that g is a modular form of some weight l; if l = 2, then we permit g to be
only quasimodular. Then for any i ≥ 1, we can apply (4.5) to compute that

∂θjg = −2((l + 2j − 2) + (l + 2j − 4) + · · ·+ l)θj−1g,

since θ∂g = 0, even when l = 2. We can then repeatedly apply this result to (4.9) to obtain
a similar decomposition of ∂if into derivatives of modular forms. Only the first term will
have a nonzero constant term, and multiplying together the appropriate factors yields the
desired result.

If f was obtained as an elliptic curve invariant, then ∂if will also have a natural inter-
pretation as an invariant by Theorem 4.2.1, and the constant term will just be the degree 0
invariant, which is often easier to compute. We state the resulting asymptotics:

Proposition 4.3.2. Suppose that I ∈ A is an insertion such that 〈I〉• is a quasimodular
form of weight k. Then the individual invariants 〈I〉•dω have asymptotic expansion

〈I〉•dω =

k
2
−1∑
i=0

(k − 2i)!

(−2)i−1i!(k − i− 1)!Bk−2i

〈δiI〉•0diσk−2i−1(d) + O(d
k−1
2

+ε)

(for all ε > 0).
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As we will see in the next section, this method is a highly effective way to produce
complete asymptotic expansions of the form (4.10) for elliptic curve invariants. One of the
reasons why Proposition 4.3.2 is so nice is the following general result on the so-called “degree
0” invariants. This proposition was repeatedly used in [10] in the special case of the trivial
product X = ∗ ×X, but the general argument is identical.

Proposition 4.3.3. Let X = X1 × X2 be a product of smooth projective varieties. Let
β ∈ H2(X) be the image of a class β ∈ H2(X1) under the fiber map X1 → X. Then
M g,n(X, β) = X2×M g,n(X1, β), and the corresponding virtual fundamental classes are related
by

[M g,n(X, β)]vir = e(TX2 ⊗ E∨) ∩ ([X2]× [M g,n(X1, β)]vir),

where e(TX2 ⊗ E∨) is the Euler class of the vector bundle TX2 ⊗ E∨.

In the case X1 = ∗, X2 = E, we obtain the following corollary about connected degree 0
invariants on an elliptic curve:

Corollary 4.3.4. Let Λ ∈ H and I = τk1(γ1) · · · τkn(γn) be insertions of Hodge and descen-
dent type on E. If γ1 ∪ · · · ∪ γn = εω for ε = ±1, then

〈ΛI〉Eg,0 =

∫
Mg,n

ε(−1)gλgΛψ
k1
1 · · ·ψknn .

Otherwise, 〈ΛI〉Eg,0 = 0.

This allows us to compute the asymptotic expansion of an arbitrary elliptic curve invariant
in terms of integrals on the moduli space of curves.

Our approach to the asymptotics of the elliptic curve invariants should be compared with
the work of Eskin and Okounkov ([5]) on the asymptotics of Hurwitz numbers, which are
closely related.

4.4 Applications and conjectures

Although Proposition 4.3.2 is generally applicable, the resulting asymptotic expansions are
particularly nice in certain special cases.

We will find the folllowing fundamental geometric result to be extremely useful.

Lemma 4.4.1. The genus g elliptic invariant 〈λgI~g−1〉dω vanishes for all insertions I ∈ A′
and all degrees d ≥ 0.

Proof. Let X = E × E. By Proposition 4.3.3, we have

[M g,n(X, (dω, 0))]vir = (−1)gλg ∩ [M g,n(E, dω)]vir × [E].

As a consequence, we have the equality

〈λgI~g−1〉Eg,dω = 〈(−1)gI ′~g−1〉Xg,(dω,0),
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where I ′ has been formed by taking I and multiplying one of the classes pulled back from
X (and to there from E via the projection onto the first component) by the fundamental
class of the second elliptic factor of X. However, all Gromov-Witten invariants of an abelian
surface vanish. This is for the same reason that all (nonreduced) Gromov-Witten invariants
of a K3 surface vanish, as any abelian surface can be symplectically deformed so that it no
longer contains curves in a given class.

Genus g invariants containing a λg−1 insertion thus can be thought of as being on the
verge of vanishing by the above lemma. One consequence of this is that these invariants
have extremely short asymptotic expansions of the type produced by Proposition 4.3.2, since
multiplying by δ tends to decrease the genus of an insertion. We start with the simplest
possible example:

Theorem 4.4.2. The elliptic invariant 〈λg−1τg−1(ω)〉 is modular for any g ≥ 1. Moreover,
the individual coefficients satisfy

〈λg−1τg−1(ω)〉dω =
g!

(2g)!2g−2
σ2g−1(d) + O(dg−

1
2

+ε)

for all ε > 0.

Proof. Applying Theorem 4.2.1, we have that ∂〈λg−1τg−1(ω)〉 = 〈λg−1τg−3(ω)〉 is a genus
g − 1 invariant and thus vanishes by Lemma 4.4.1. Thus 〈λg−1τg−1(ω)〉 is modular. The
second half of the theorem follows from Proposition 4.3.2 and the evaluation of the degree
0 invariant 〈λg−1τg−1(ω)~g−1〉E0 . By Corollary 4.3.4, this invariant is equal to the Hodge
integral ∫

Mg,1

(−1)gλgλg−1ψ
g−1, (4.11)

which was calculated by Faber ([8]) to be − (g−1)!B2g

2g(2g)!
. Multiplying all the constant factors

together gives the claimed result.

The strength of these asymptotics may suggest the following conjecture:

Conjecture 4.4.3. For any g ≥ 1,

〈λg−1τg−1(ω)〉 =
g!

2g−1
C2g.

In other words, the asymptotic expansion provided by Proposition 4.3.2 may actually be
exact in this case. We will later see further motivation for believing this conjecture, which
was checked for g ≤ 8 using a Maple program ([3]) written by Bryan and Pandharipande for
computing Gromov-Witten invariants of curves.

In general, any genus g invariant containing a λg−1 insertion will demonstrate similar
behavior.
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Theorem 4.4.4. Let I ∈ A′ be any monomial in the Hodge classes and the elliptic descendent
invariants and suppose that g ≥ 1. Then there exists C ∈ Q and e ≥ 0 such that

〈λg−1I〉Eg,dω = Cdeσ2g−1(d) + O(de+g−
1
2

+ε)

for any ε > 0. If I = τk1(ω) · · · τkm(ω)τkm+1+1(1) · · · τkn+1(1) with k1, . . . , km, km+1+1, . . . , kn+
1 ≥ 1 and k1 + . . .+ kn = g − 1, then e = m− 1 and

C =
(2g + n− 3)!

∑m
i=1(2ki + 1)

22g−2(2g +m− 2)!
∏n

i=1(2ki + 1)!!
,

where (2ki + 1)!! = 1 · 3 · · · (2ki + 1).

Proof. Let I = ΛI ′, where Λ ∈ H is an element of the Hodge algebra and I ′ ∈ A is a product
of descendent classes. Applying Proposition 4.2.4 helps us to expand 〈δjλg−1ΛI ′〉Eg . Most
of the resulting terms vanish because the genus decreases to g − 1; the only terms of the
operator described in Proposition 4.2.4 that do not decrease the genus are

η :=
d

dτ0(ω)
− 2

∑
k≥0

τk+1(1)
d

dτk(ω)
.

Although Proposition 4.2.4 only applies directly to disconnected invariants, we can use
Proposition 3.1.1 to see that we still have 〈δjλg−1I〉Eg = 〈λg−1ΛηjI ′〉Eg . We then apply
Corollary 4.3.4 to see that the degree 0 term of this invariant vanishes unless the product
of the evaluation classes left in some term of ηjI ′ is equal to ω, which clearly happens for
at most one value of j. Then Proposition 4.3.2 implies that the asymptotic expansion of
〈λg−1I〉Eg,dω has at most one term in it, as desired.

For the second part of this theorem, this value of j is clearly equal to m − 1, and
Corollary 4.3.4 implies that

〈λg−1η
m−1I〉Eg,0 = (−2)m−1(m− 1)!

m∑
i=1

∫
Mg,n

(−1)gλgλg−1ψ
k1+1
1 · · ·ψkii · · ·ψkn+1

n . (4.12)

These integrals on the moduli space of curves were computed by Getzler and Pandharipande
in [10] assuming the Virasoro conjecture for P2 in degree 0, which has since been proven.
Their idea was that Proposition 4.3.3 can be used to relate integrals of this form to the
descendent invariants of P2, which could then be computed using the Virasoro constraints.
In this way, one arrives at the formula∫

Mg,n

(−1)gλgλg−1ψ
l1
1 · · ·ψlnn =

(2g + n− 3)!(2g − 1)!!

(2g − 1)!(2l1 − 1)!! · · · (2ln − 1)!!

∫
Mg,1

(−1)gλgλg−1ψ
g−1

(4.13)
(for positive li) expressing the given integrals in terms of an integral which we have already
encountered in (4.11). The combination of (4.12), (4.13), and Proposition 4.3.2 then gives
the claimed value for C.
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The corresponding general conjecture can be stated more succinctly:

Conjecture 4.4.5. For any insertion I ∈ A, the asymptotic expansion provided by Propo-
sition 4.3.2 for 〈λgI〉Eg,dω is exact.

In general, when is the asymptotic expansion of Proposition 4.3.2 exact? In other words,
which elliptic invariants 〈I〉 are linear combinations of derivatives of Eisenstein series? We
have just conjectured that this is the case whenever I is a genus g invariant containing a
λg−1 factor, but we can only prove the following special case of this conjecture.

Proposition 4.4.6. 〈λg−1λg−2τ1(ω)〉E = |B2g−2|
(

2g
2

)
C2g

Proof. As observed by Faber (see the proof of Lemma 1 in [8]), the Mumford relations for
the Hodge classes imply that

∑
k≥0

(2k + 1)! ch2k+1 t
2k =

(
g∑
i=0

iλit
i−1

)(
g∑
i=0

λi(−t)i
)
.

Taking the coefficient of t2g−4 yields that

(2g−3)! ch2g−3 = ((−1)g−3g+(−1)g(g−3))λgλg−3+((−1)g−2(g−1)+(−1)g−1(g−2))λg−1λg−2,

so
λg−1λg−2 = (−1)g(2g − 3)! ch2g−3 +3λgλg−3.

The invariant 〈λgλg−3τ1(ω)〉E vanishes by Lemma 4.4.1, so Proposition 3.5.1 gives

〈λg−1λg−2τ1(ω)〉E = (−1)g(2g − 3)!〈ch2g−3 τ1(ω)〉E = |B2g−2|
(

2g

2

)
C2g,

as desired.

All of these invariants containing λg−1 can be interpreted using Proposition 4.3.3 as
invariants on E×P1 representing the class (dω, 0) in much the same way as the λg invariants
were interpreted as invariants on E × E in the proof of Lemma 4.4.1. More precisely,

〈λg−1I~g−1〉Edω = (−1)g−1 1

2
〈I~g−1〉E×P1

(dω,0). (4.14)

The Virasoro conjectures have not yet been proven for E × P1 (even in this case), but we
can use (4.14) to prove the following consequence of the Virasoro conjectures:

Proposition 4.4.7. The Virasoro conjectures for the pair (E × P1, (dω, 0)) for d ≥ 0 imply
Conjecture 4.4.3.
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Proof. We have already computed in Proposition 4.4.6 that the elliptic invariant

〈λg−1λg−2τ1(ω)~g−1〉 = 〈λg−1λg−2τ1(ω)~g−1〉•

is a multiple of the Eisenstein series C2g. We now compute this elliptic invariant in a different
way. The Hodge class λg−2 can be written as a polynomial in the Chern characters chk, which
we then replace by descendent factors using Proposition 3.4.1. By Lemma 4.4.1, all the terms
in which the genus decreases vanish. This has the consequence that the resulting invariants
after removing all of the chk factors are all of the form

〈λg−1τk(ω)τl1(1) · · · τln(1)~g−1〉.

The observations before this proposition together with the Virasoro constraints for E × P1

then allow us to remove the τli(1) insertions, and we conclude that 〈λg−1λg−2τ1(ω)~g−1〉 is
some multiple of 〈λg−1τg−1(ω)~g−1〉, and thus 〈λg−1τg−1(ω)~g−1〉 is a multiple of the Eisen-
stein series C2g, as desired.

We also have the following unexpected example of an exact asymptotic expansion.

Proposition 4.4.8. Let d, g ≥ 1. Then

〈τ2g−2(ω)〉Eg,dω =
22g−2

(2g − 1)!

∑
mn=d

(2m− n)2g−1

=
22g−2

(2g − 1)!

g−1∑
i=0

(−1)i
(

2g − 1

i

)
(22g−1−i − 2i)diσ2g−1−2i(d).

Proof. Recall that

Θ(z) = (e
z
2 − e−

z
2 )
∏
k≥1

(1− ezqk)(1− e−zqk)
(1− qk)2

.

The formula to be proven is then equivalent to the easily proven identity∏
k≥1

(1− qk)2

(1− xqk)(1− x−1qk)
= 1 + (x

1
2 − x−

1
2 )
∑
m,n≥1

(xm−
n
2 − x

n
2
−m)qmn

upon setting x = ez.
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Chapter 5

K3 surfaces

5.1 Reduced invariants and the KKV conjecture

We now consider the case of Gromov-Witten invariants on a K3 surface X in greater depth.
Recall that these invariants must be defined by intersecting with a “reduced” virtual class
[M g,n(X, β)]red of dimension g + n.

By analogy with our special generatingfunctionological notation for elliptic curve invari-
ants, we let

〈I〉K3
g =

∑
h≥0

〈I〉K3
g,βq

h−1,

where β is chosen to be a primitive class with β2 = 2h− 2 and g is often omitted and then
is determined by the dimension of the insertion I.

Thus the Bryan-Leung example of Section 2.1 can be rewritten as

〈τ0(p)τ0(p) · · · τ0(p)〉K3
n =

(θC2)n

∆
, (5.1)

where ∆ = q
∏

k≥1(1− qk)24 is Ramanujan’s delta-function, the unique weight 12 cusp form
with Fourier expansion q + O(q2).

The KKV conjecture is the most important open question in the Gromov-Witten theory
of the K3 surface. It is equivalent to the following evaluation of the pure Hodge invariants
〈λg〉K3: ∑

g≥0

〈λg〉K3z2g−2 =
1

∆ ·Θ(z)2
.

See Conjecture 2 of [14] for an alternative description in terms of BPS counts.
Note that the g = 0 piece of the KKV conjecture coincides with the n = 0 case of the

theorem of Bryan and Leung; this was first conjectured by Yau and Zaslow in [20].
It is not a coincidence that in both of the above examples, all of the K3 invariants

are of the form f
∆

for f a quasimodular form. A connection between the elliptic curve
invariants of the preceding chapters and these K3 invariants, first used by Bryan and Leung
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([2]) to prove (5.1), was recently expanded by Maulik and Pandharipande ([13]) to give an
algorithm for writing ∆〈I〉K3 in terms of elliptic curve invariants for any insertion I. This
algorithm unfortunately does not seem to be directly applicable to the Hodge integrals of
the KKV conjecture, but we will see in the next section that it is very useful for evaluating
the stationary K3 invariants.

5.2 The elliptic connection

Bryan and Leung proved their result by using a K3 surface with an elliptic fibration with
section; in other words, they chose (via deformation arguments) to use a K3 surface X
equipped with a map X → P1 such that all but 24 fibers are smooth elliptic curves and the
24 singular fibers are nodal rational curves, and such that there is a section P1 → X.

Let F, S ∈ H2(X) be the classes of the fibers and the section respectively. Then
β = hF+S is a primitive element of the Picard lattice satisfying β2 = 2h(F ·S)+S2 = 2h−2,
so it can be used for computing the Gromov-Witten invariants of X. This is particularly
nice because the moduli space of stable maps M g,n(X, β) is relatively simple. Stable maps
f : C → X representing β must consist of one irreducible component of genus zero map-
ping isomorphically along the section and some number of other components mapped onto
individual fibers, with the sum of the degrees of these other maps being h. Moreover, since
only curves of positive genus can map onto an elliptic curve, all but at most g of these other
irreducible components must map to nodal fibers.

The invariants considered by Bryan and Leung can be interpreted as counting the number
of genus n maps whose images contain n given generic points on X. If these n points are
chosen to belong to distinct smooth fibers of an elliptic fibration of the type described
above, then all such maps must consist of isogenies from elliptic curves to each of the n
elliptic fibers, connected by the rational section curve and possibly containing additional
rational components mapping to the singular fibers.

Thus these invariants can be rewritten as a sum as follows:

〈τ0(p) · · · τ0(p)〉K3
n,hF+S =

∑
d1+···+dn+e1+···+e24=h

Ad1 · · ·AdnPe1 · · ·Pe24 , (5.2)

where Ad is the number of degree d isogenies from some elliptic curve with two marked points
(the intersection with the section curve and the actual marked point) to a given elliptic curve
with two marked points) and Pe is a similar (but more complicated) count of the contribution
(with multiplicity) from the degree e maps to a singular fiber.

Now, it is easily computed that Ad = dσ1(d), since there are σ1(d) index d sublattices
of a given 2-dimensional lattice and then there are d choices for the marked points on the
source curve. Alternatively, note that Ad = [qd]〈τ0(ω)τ0(ω)〉 = [qd]θC2. Through a more
involved computation, Bryan and Leung determined that Pe is simply the partition number
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p(e) = [qe]
∏

k≥1(1− qk)−1. As a consequence, they obtained from (5.2) that

〈τ0(p) · · · τ0(p)〉K3
n = q−1(θC2)n

(∏
k≥1

(1− qk)−1

)24

=
(θC2)n

∆
.

In a forthcoming paper, Maulik and Pandharipande ([13]) describe how to extend this
method of Bryan and Leung to reduce any K3 invariant to a product of elliptic curve invari-
ants and a 1

∆
factor from the singular fibers, as above. This method works particularly well

for the stationary invariants, when it describes quasimodular forms Tk of weight 2k+ 4 such
that

〈τk1(p) · · · τkn(p)〉K3 =
1

∆
Tk1 · · ·Tkn (5.3)

for any k1, . . . , kn ≥ 0.
Here Tk can be obtained in terms of elliptic curve invariants by

Tk =
∑
i,j≥0

2i+j≤k

(−1)i+j
Ci

2

i!
〈λjτk(ω)τk−2i−j(ω)〉E.

Straightforward computation using the methods of the previous chapters gives the first
few of these quasimodular factors:

T0 = 〈τ0(ω)τ0(ω)〉E = θC2 = −2C2
2 + 10C4

T1 = 〈τ1(ω)τ1(ω)〉E − 〈λ1τ1(ω)τ0(ω)〉E = θ

(
2

3
C2

2 −
1

3
C4

)
= −8

3
C3

2 + 16C2C4 − 7C6

T2 = 〈τ2(ω)τ2(ω)〉E − 〈λ1τ2(ω)τ1(ω)〉E + 〈λ2τ2(ω)τ0(ω)〉E − C2〈τ2(ω)τ0(ω)〉E

= θ

(
−1

6
C3

2 −
11

5
C2C4 −

11

10
C6

)
= C4

2 + 17C2
2C4 − 33C2C6 −

330

7
C2

4 .

In general, it seems difficult to obtain an exact formula for Tk.

5.3 Computations

In this section, we perform the computations necessary to verify the KKV conjecture for
g ≤ 3. The basic idea will be to write the Hodge class λg as a linear combination of
boundary strata. This will allow us to express the Hodge integrals in terms of relatively
simple descendent invariants on the K3 surface, which can then be evaluated through a
combination of methods, including use of the theorem of Bryan and Leung (5.1) and the
generalization (5.3). We will also need the formulas (4.4) for the action of the differentiation
operator θ on the first few Eisenstein series, together with the identity

θ

(
1

∆

)
=

24C2

∆
.
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It will be convenient to fix a basis for the cohomology of our K3 surface X. Let γ0 =
1 ∈ H0(X) and let γ23 = [p] ∈ H4(X) be the fundamental class of X. Let γ1, · · · , γ22 be
any basis for H2(X). Then we can define the dual basis γ∨i ∈ H∗(X) for 0 ≤ i ≤ 23 by
γiγ
∨
j = δij[p]. Of course, γ∨0 = γ23 and γ∨23 = γ0.
We begin by noting that when g = 0, the KKV conjecture is simply the Yau-Zaslow

conjecture 〈1〉K3 = 1
∆

, proven by Bryan and Leung (see [20], [2]).
The case g = 1 is significantly more involved. We want to rewrite λ1 in terms of Q-classes

of boundary strata on a moduli stack of curves. However, M1 is not stable, so we add a
marked point: by the divisor equation,∫

[M1,0(X,β)]red
λ1 =

∫
[M1,1(X,β)]red

λ1 ev∗1(β∨),

where β∨ · β = 1.
Now, let δ0 ∈ H2(M1,1) denote the Q-class [∆0], where ∆0 is the boundary locus of genus

0 curves with one node (and one marked point), which is just a single point. It is well known
that λ1 = 1

12
δ0, so we can remove the λ1 insertion, restrict to maps from ∆0, and resolve the

node to obtain∫
[M1,1(X,β)]red

λ1 ev∗1(β∨) =
1

12
· 1

2

∫
[M0,3(X,β)]red

ev∗1(β∨)(ev2× ev3)∗([D]),

where [D] =
∑23

i=0(γi, γ
∨
i ) ∈ H4(X ×X) is the Poincaré dual of the diagonal X ⊂ X ×X.

(Also, the extra factor of 1
2

is because there are two different ways of labeling the two new
marked points.) Now, the genus zero invariants involving pullbacks of γ23 = [p] all vanish
because there are only a finite number (determined by Yau-Zaslow) of rational curves on X
representing β, so such curves cannot be constrained to pass through a generic point of X.
This means that we only have the terms

1

24

22∑
i=1

∫
[M0,3(X,β)]red

ev∗1(β∨) ev∗2(γi) ev∗3(γ∨i ).

Applying the divisor equation again gives that this is just

1

24

22∑
i=1

(β · γi)(β · γ∨i )〈1〉K3,

which simplifies further upon using Yau-Zaslow to

1

24
(β · β)[qh−1]

1

∆
=
h− 1

12
[qh−1]

1

∆

= [qh−1]
1

12
θ

(
1

∆

)
= [qh−1]

2C2

∆
,
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as predicted by the KKV conjecture.
In genus 2 we do not have to use the same trick of introducing a marked point, so we just

want to write λ2 in terms of boundary classes on M2. Here the relevant boundary strata
are ∆00, the generic element of which is a genus 0 curve with 2 nodes, and ∆01, where the
generic element is a genus 0 curve with 1 node intersecting a smooth genus 1 curve in a
single point. The corresponding Q-classes are δ00, δ01 ∈ H4(M2). It turns out that

λ2 =
1

120
(δ00 + δ01)

(see section 8 of [15] for more details).
Again, we can replace λ2 by the classes δ00 and δ01 and then remove these classes by

restricting to maps from curves in the corresponding boundary loci; after resolving the
singularities of the source curves, we see that

〈λ2〉K3
β =

1

120
· 1

8

∫
[M0,4(X,β)]red

(ev1× ev2)∗([D])(ev3× ev4)∗([D])

+
1

120
· 1

2

∫
[M1,1(X,β)]red×[M0,3(X,0)]vir

(ev1× ev2)∗([D])(ev3× ev4)∗([D]).

(5.4)

Remark. In the second term, it should be observed that the curve class β cannot split
nontrivially between the two irreducible components because it is primitive, and thus one of
the two components must be contracted to a point; this can only be the rational component
because its moduli space M0,3 has dimension 0.

We now compute the two terms of (5.4). The first term is completely analogous to the
calculation in genus 1, and we obtain

1

120
· 1

8

∫
[M0,4(X,β)]red

(ev1× ev2)∗([D])(ev3× ev4)∗([D]) =
1

960
(2h− 2)2[qh−1]

1

∆

= [qh−1]
1

240
θ2

(
1

∆

)
= [qh−1]

11
5
C2

2 + C4

∆
.

For the second term of (5.4), observe that M0,3(X, 0) = X and (ev3× ev4)∗([D]) = 24[p],
so this integral reduces to

1

10

∫
[M1,1(X,β)]red

ev∗([p]),

which can be evaluated by the result of Bryan and Leung to be

1

10
[qh−1]

θC2

∆
= [qh−1]

−1
5
C2

2 + C4

∆
.

Adding the two terms of (5.4) gives that

〈λ2〉K3 =
2C2

2 + 2C4

∆
,
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as claimed by the KKV conjecture.
The genus 3 case is significantly more complicated. To start with, the tautological co-

homology space containing λ3 on M3 has rank 10. The details of this were worked out by
Faber in [6]; 9 of the 10 generators can be chosen to be Q-classes corresponding to boundary
strata (a), (b), . . . , (i) depicted in Figure 6 of [6]. For the last generator, we let [(j)]Q be the
Q-class corresponding to a genus 0 curve with 1 node intersecting a smooth genus 2 curve
at a point, with a cotangent line above the intersection point. Then we can write (see [7])

λ3 =
1

504

(
1

2
[(a)]Q + [(b)]Q + [(c)]Q +

3

10
[(d)]Q −

2

5
[(f)]Q + 2[(g)]Q + 2[(j)]Q

)
. (5.5)

Through arguments similar to those used in the remark after (5.4), we can show that
the integrals of all of these classes vanish except for those of [(a)]Q, [(d)]Q, [(e)]Q, and [(j)]Q.
Since [(e)]Q does not appear in the decomposition (5.5), this means that we need to calculate
three integrals.

First, the class [(a)]Q can be handled analogously to δ00 in the genus 2 case, since (a) is
just the locus of genus 0 curves with 3 nodes. We calculate:∫

[M3,0(X,β)]red
[(a)]Q =

1

48
(β2)3[qh−1]

1

∆

= [qh−1]
1

6
θ3

(
1

∆

)
= [qh−1]

1760C3
2 + 2400C2C4 + 840C6

∆
.

The class [(d)]Q is similarly obtained by adding a node to the genus 2 case δ01, so we can
compute∫

[M3,0(X,β)]red
[(d)]Q =

1

4

∫
[M1,3(X,β)]red×X

(ev1× ev2)∗([D])(ev3× id)∗([D])(id× id)∗([D])

=
1

4
24(2h− 2)〈τ0([p])〉K3

β

= [qh−1]12θ

(
θC2

∆

)
= [qh−1]

−480C3
2 + 1440C2C4 + 2520C6

∆
.
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Finally, we calculate the integral of the ψ-class [(j)]Q:∫
[M3,0(X,β)]red

[(j)]Q =
1

2

∫
[M2,1(X,β)]red×X

ψ1(ev1× id)∗([D])(id× id)∗([D])

=
1

2
24〈τ1([p])〉K3

β

= [qh−1]
12T1

∆

= [qh−1]
−32C3

2 + 192C2C4 − 84C6

∆
.

We now use the decomposition (5.5) and the above three calculations to obtain that

〈λ3〉K3 =
1

504∆

(1

2
(1760C3

2 + 2400C2C4 + 840C6) +
3

10
(−480C3

2 + 1440C2C4 + 2520C6)

+ 2(−32C3
2 + 192C2C4 − 84C6)

)
=

4
3
C3

2 + 4C2C4 + 2C6

∆
,

as predicted by the KKV conjecture.
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