
DR CYCLE POLYNOMIALITY AND RELATED
RESULTS

A. PIXTON

0. Introduction

At the end of the appendix of [1] I claimed that the double ramifi-
cation cycle formula (proved in that paper) can be used to prove that
double ramification cycles are polynomial in the ai inputs. These rough
notes are my attempt to finally write down a proof of that claim (Theo-
rem 2) along with various generalizations and related results stemming
from discussions with D. Zagier, especially Zagier’s spanning tree for-
mula (Theorem 3). This may eventually turn into a published paper
joint with Zagier, as per our original plan, but for now this is just in-
tended as something that can be posted on my website and shared with
interested parties, so that the proof is out there in some form, however
rough.

1. Statements of results

Let G be a (weakly) connected digraph, with vertex set V (G), di-
rected edge set E(G), and head/tail functions h, t : E(G) → V (G).
Also suppose that for each edge f ∈ E(G) we have a polynomial
Pf (r) ∈ Q[r]. For any positive integer r such that Pf (r) is an inte-
ger, we associate to the edge f the set of r consecutive integers

Sf = {Pf (r), Pf (r) + 1, . . . , Pf (r) + r − 1}.
We always assume that there exists one positive integer r (and hence
infinitely many) such that Pf (r) is an integer for all f ∈ E(G). We call
this data (G, {Pf}) a graph with edge polynomials.

Remark. In the case of the original DR formula, the edge polynomials
Pf (r) are just 0 and the sets Sf are {0, 1, . . . , r − 1}. We set things
up in slightly greater generality because some applications of DR poly-
nomiality use variants of the formula (e.g. k-twisted DR or DR with
target varieties) that effectively involve various constant shifts of the
set Sf . In addition, Zagier proposed using Sf = {1−r

2
, . . . , r−1

2
} (for r

odd) as a more combinatorially natural construction.
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Given a graph with edge polynomials (G, {Pf}), a positive integer
r such that Pf (r) is an integer for all f ∈ E(G), and integers A =
(av)v∈V (G) with sum zero, we define a formal power series

DRr
G,{Pf}(A) ∈ Q[[{xf}f∈E(G)]]

by the finite average

DRr
G,{Pf}(A) =

1

rh1(G)

∑
wf∈Sf

(∂w)v≡av (mod r)

∏
f∈E(G)

exp(wfxf ).

Here ∂ is the usual boundary map on 1-chains in the 1-complex G, i.e.

(∂w)v =
∑

h(f)=v

wf −
∑

t(f)=v

wf .

The most basic polynomiality result is that this averaging construc-
tion DRr

G,{Pf}(A) is quasi-polynomial in r:

Theorem 1. Let (G, {Pf}) be a graph with edge polynomials, let A be
a fixed sum zero vector A = (av)v∈V (G), and let M be any monomial
in the xf variables. Then for all sufficiently large r, the coefficient of
M in DRr

G,{Pf}(A) is a quasi-polynomial in r with period dividing the

LCM of all denominators in the coefficients of the {Pf}. Moreover,
the constant term of this quasi-polynomial is well-defined (i.e. does not
depend on the congruence class of r).

This was proved (in slightly lower generality) as the main result of
the appendix of [1]. We will reprove it here in a different way.

Given this theorem, define DRG,{Pf}(A) to be the formal power series
formed from DRr

G,{Pf}(A) by taking the constant term of the r-quasi-
polynomial for each coefficient in the xf variables. Then we can state
the main polynomiality result of these notes:

Theorem 2. Let (G, {Pf}) be a graph with edge polynomials, and let
M be any monomial in the xf variables. Then the coefficient of M in
DRG,{Pf}(A) is a polynomial in the integer variables av.

(This implies the polynomiality claim at the end of the appendix of
[1].)

This polynomiality is actually a consequence of the following theo-
rem:

Theorem 3. Let (G, {Pf}) be a graph with edge polynomials. Then

DRG,{Pf}(A) =
∑

T spanning tree in G

∏
f∈E(T )

exp(af,Txf )
∏

f /∈E(T )

xf exp(Pf (0)xf,T )

exp(xf,T )− 1
,



DR CYCLE POLYNOMIALITY AND RELATED RESULTS 3

where af,T is the sum of the av for v in the connected component of
T \ f containing h(f), and xf,T is the signed sum of the xf around the
unique cycle in T ∪ f , oriented in the direction of f .

(This formula was first discovered and proved by D. Zagier. Note
that for the basic double ramification cycle formula of [1], Pf = 0 so
the exp(Pf (0)xf,T ) factor is just 1.)

(I plan to add a couple more results about the polynomials DRG,{Pf}(A)
to these notes at some point, but for now I’ll stop with this formula of
Zagier.)

2. Miscellaneous lemmas

In this section we collect two technical lemmas that are not directly
related to the DR sums but will be essential parts of our proofs.

First, a simple construction that yields a quasi-polynomial.

Lemma 4. Let P (r) ∈ Q[r] be a polynomial. Let m > 0 be an integer
such that mP (r) ∈ Z[r]. For each integer r ≥ 0, let 0 ≤ [P (r)]r < r
denote the unique rational number in that interval differing from P (r)
by an integer multiple of r. Then for all sufficiently large r, [P (r)]r is
a quasi-polynomial in r with period dividing m whose constant term is
P (0) in all congruence classes (mod m).

Proof. Assume for simplicity that P (0) ≥ 0 (the case of negative P (0)
is similar). Assume r > mP (0). Then

P (r) = P (0) +
r

m
· m(P (r)− P (0))

r
,

so

[P (r)]r = P (0) +
ir

m

whenever the integer-coefficient polynomial m(P (r)−P (0))
r

is congruent to
some i (mod m) with 0 ≤ i < m. But the value of this polynomial
mod m only depends on the value of r mod m, so we are done. �

Second, an algebraic identity.

Lemma 5. Let 0 ≤ c < k be integers. Let z1, . . . , zk be pairwise distinct
elements of some field. Then

1 =
k∑

i=1

zci
∏
j 6=i

1− zj
zi − zj

.
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Proof. It suffices to prove this identity over C. If some zi = 1, all the
terms on the right except for the ith term vanish and the identity is
trivial. Now assume zi 6= 1 for all i and consider the rational function

R(z) =
zc

1− z

k∏
j=1

1− zj
z − zj

.

The meromorphic differential R(z)dz (on the Riemann sphere) has
residue at z = 1 equal to −1 and has residue at z = zi equal to the ith
term of the right side of the identity. Since 0 ≤ c < k, these are the
only poles and the Residue Theorem gives the desired identity. �

3. Proofs of results

First, the plan: after a simple lemma about reversing edge orienta-
tions, we will prove a key recurrence (Proposition 7) for DRr

G,{Pf}(A).
This recurrence will give us the r-quasi-polynomiality of Theorem 1,
and then we can take the r-constant term of the recurrence to get a
slightly simpler recurrence (Corollary 8) for DRG,{Pf}(A). We will then
prove Theorem 3 by checking that Zagier’s formula also satisfies this
recurrence. Finally, Theorem 2 will follow immediately from inspection
of Theorem 3.

We start by observing that we can reverse the direction of an edge
in the digraph G fairly freely.

Lemma 6. Let (G, {Pf}) be a graph with edge polynomials. Let g ∈
E(G) be an edge. Let H be the digraph formed by replacing edge g
in G with a new edge g′ in the opposite direction, and let Pg′(r) =
1 − r − Pg(r). Then DRr

H,{Pf}(A) = DRr
G,{Pf}(A) after the change of

variables xg′ = −xg. (Assuming Lemma 1, we also have DRH,{Pf}(A) =
DRG,{Pf}(A) after the same change of variables.)

Proof. This follows immediately from the definition of DRr
G,{Pf}(A) be-

cause Sg′(r) = {−x | x ∈ Sg(r)}. �

It is also straightforward to check that the tree sum formula in The-
orem 3 is consistent with this edge-reversal property.

Now we give the recurrence, stated for convenience in the case where
a given vertex v has no outgoing non-loop edges; using the preceding
lemma to reverse edges, we can always make a vertex of this form.

Proposition 7. Let (G, {Pf}) be a graph with edge polynomials. Let
v ∈ V (G) be a vertex with no outgoing non-loop edges and k > 0
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incoming non-loop edges f1, . . . , fk. Let xi = xfi be the edge variables
corresponding to these edges. Then

DRr
G,{Pf}(A) =

k∑
i=1

exp(avxi)

(∏
j 6=i

1− e−rxj

e−rxi − e−rxj

)
DRr

Gi,{Pf}(Ai)|x′
fj

=xj−xi
.

Here av is the smallest integer in Sf1 + · · ·+ Sfk congruent to av (mod
r), Gi is the graph formed by contracting the edge fi in G (leaving the
{Pf} data unchanged for the other edges), and Ai is the sum zero vertex
weight assignment on Gi given by taking A and adding the weights on
the vertices that are identified by the contraction. The power series
DRr

Gi,{Pf}(Ai) is interpreted as using variables x′f for f ∈ E(Gi), and

we change variables to the original variable set by letting x′fj = xj−xi,

and x′f = xf for all other edges f .

Proof. The set of weightings (wf ) summed over in DRr
G,{Pf}(A) natu-

rally bijects (by restriction) to the sets of weightings for each of the
contracted versions DRr

Gi,{Pf}(Ai). Thus it is sufficient to check the

given identity if we fix a choice of (wf ) for G and use just that single
term from each of the DR sums. In other words, the left side of this
subidentity to be proved is simply

1

rh1(G)

∏
f∈E(G)

exp(wfxf ).

Dividing through by this left side and cancelling various factors, we see
that it is sufficient to check that

1 =
k∑

i=1

exp

((
av −

k∑
j=1

wfj

)
· xi

)∏
j 6=i

1− e−rxj

e−rxi − e−rxj
.

But
∑k

j=1wfj belongs to Sf1 + · · · + Sfk and is congruent to av (mod

r), so
k∑

j=1

wfj − av = cr

for some integer 0 ≤ c < k. Thus this identity is just Lemma 5 with
zi = e−rxi , and we are done. �

Using this recurrence, it is easy to see the basic r-quasi-polynomiality
of Theorem 1.

Proof of Theorem 1. We first check the result for graphs G with a single
vertex (and some number of loops). In this case it is easy to see that
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DRr
G,{Pf}(A) factors as a product over the loops, and it suffices to check

that each coefficient of the power series

1

r

Pf (r)+r−1∑
w=Pf (r)

ewx

is a polynomial in r (for r sufficiently large). But the coefficient of xn

is then just
Q(Pf (r) + r)−Q(Pf (r))

r
for some polynomial Q of degree n+ 1, and this is clearly a polynomial
in r.

Now we induct on the number of vertices in G. Flipping edge direc-
tions (as in Lemma 6) clearly doesn’t affect r-quasi-polynomiality, so
we can assume that G has a vertex v of the form required for Propo-
sition 7. Then the graphs Gi appearing in Proposition 7 have fewer
edges than G so are handled by induction, and everything in the re-
currence other than the number av is clearly polynomial in r. Let
P (r) =

∑
i Pfi(r), and note that

av = P (r) + [av − P (r)]r

where [x]r is the unique integer in {0, . . . , r − 1} congruent to x (mod
r). Lemma 4 then gives the desired statement. �

Now that Theorem 1 has been proven, it makes sense to take the
constant term in r of both sides of the recurrence Proposition 7. Noting
that the quasi-polynomial av has constant term av (by Lemma 4), this
immediately gives the following corollary.

Corollary 8. Let (G, {Pf}) be a graph with edge polynomials. Let
v ∈ V (G) be a vertex with no outgoing non-loop edges and k > 0
incoming non-loop edges f1, . . . , fk. Let xi = xfi be the edge variables
corresponding to these edges. Then

DRG,{Pf}(A) =
k∑

i=1

exp(avxi)

(∏
j 6=i

xj

xj − xi

)
DRGi,{Pf}(Ai)|x′

fj
=xj−xi

.

Here Gi is the graph formed by contracting the edge fi in G (leaving the
{Pf} data unchanged for the other edges), and Ai is the sum zero vertex
weight assignment on Gi given by taking A and adding the weights on
the vertices that are identified by the contraction. The power series
DRGi,{Pf}(Ai) is interpreted as using variables x′f for f ∈ E(Gi), and
we change variables to the original variable set by letting x′fj = xj−xi,

and x′f = xf for all other edges f .



DR CYCLE POLYNOMIALITY AND RELATED RESULTS 7

We now prove Theorem 3 (Zagier’s formula).

Proof of Theorem 3. We first check this formula for graphs G with a
single vertex (and some number of loops). This is a straightforward
computation. (I’ll probably add the details here later though.)

We now induct on the number of vertices in G. Theorem 3 is com-
patible with flipping edge directions (as in Lemma 6), so we can assume
that G has a vertex v of the form required for Corollary 8. It remains
to check that Zagier’s formula is compatible with this recurrence.

Note that the spanning trees of the contraction Gi are in bijection
with the spanning trees of G that include the edge fi. Fix a spanning
tree T of G; we will check the desired identity after restriction to just
those terms using T (or a contraction Ti of T ). Let I be the set of i
such that T includes the edge fi. Then the identity to be checked is∏
f∈E(T )

exp(af,Txf )
∏

f /∈E(T )

xf exp(Pf (0)xf,T )

exp(xf,T )− 1
=

∑
i∈I

exp(avxi)

(∏
j 6=i

xj

xj − xi

) ∏
f∈E(T )\{fi}

exp(af,Tx
′
f )

∏
f /∈E(T )

x′f exp(Pf (0)x′f,Ti
)

exp(x′f,Ti
)− 1


x′
fj

=xj−xi

.

Observe that under the x′fj = xj − xi change of variables, we have

x′f,Ti
= xf,T . This means that many factors cancel on the two sides.

Cancelling them yields the identity Lemma 5 again, this time with
k = |I|, c = 0, and the zi as the xi variables (reindexed). �

This formula has only polynomial dependence on the av, so Theo-
rem 2 then follows by inspection.
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