PROBLEM SET 7 (WILL NOT BE GRADED GIVEN THE LATE POSTING)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Suppose that k is an algebraically closed field of characteristic 0 , and suppose that C is a connected smooth curve over k admitting an unramified morphism $\pi: C \rightarrow \mathbb{A}_{k}^{1}$. Prove that π is an open embedding. (See Exercise 21.7.F for a little discussion of this. Once you've done this problem, you might be interested in thinking about what happens if you delete a (closed) point from \mathbb{A}_{k}^{1} and try again to understand unramified covers.)
Problem 2. Suppose that k is an algebraically closed field of characteristic not equal to 3 . Let $g \geq 0$. Suppose that x_{1}, \ldots, x_{g+2} are distinct closed points in \mathbb{P}_{k}^{1}. Count the number of isomorphism classes of degree 3 maps of irreducible smooth projective curves $\pi: C \rightarrow \mathbb{P}_{k}^{1}$ that are branched precisely over the x_{i} and such that the extension of function fields is Galois. (The answer should end up being $\left(2^{g+1}-(-1)^{g+1}\right) / 3$.)
Problem 3. Suppose that k is an algebraically closed field of characteristic 0 , and suppose that $C \subset \mathbb{P}_{k}^{2}$ is a smooth plane curve of degree d. Let $p \in \mathbb{P}_{k}^{2}$ be a closed point. Count the number of tangent lines to C that pass through a "general" such p; in other words, your answer should be true on some open dense subset of \mathbb{P}_{k}^{2}. (The answer should end up being $d(d-1)$ - you can obtain this either by using the formula for the genus of C along with the Riemann-Hurwitz formula on the projection of C from p, or by directly interpreting these tangent lines as coming from the intersection of a degree $d-1$ curve with C. In the latter case, this computation along with the Riemann-Hurwitz formula gives yet another computation of the genus of a smooth plane curve.)

