PROBLEM SET 6 (DUE ON THURSDAY, MAY 2)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 19.11.B (a map of projective varieties not arising from a map of (regraded) graded rings)
Problem 2. Exercise 21.2.K (pullback of differentials; this affine statement gives the global statement in Theorem 21.2.27)
Problem 3. Suppose (E, p) is a (smooth) elliptic curve in Weierstrass form $y^{2}=x^{3}+a x+b$ (along with the point at infinity p, so really $E=\operatorname{Proj} k[x, y, z] /\left(y^{2} z-x^{3}-\right.$ $\left.a x z^{2}-b z^{3}\right)$). Show that the rational section $d x / y$ of $\Omega_{E / k}$ actually has no zeroes or poles in E, so it generates $\Omega_{E / k} \cong \mathcal{O}_{E}$.

