PROBLEM SET 5 (DUE ON THURSDAY, APRIL 18)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 19.2.B (deleting a point makes a curve affine)
Problem 2. Exercise 19.8.B (curves of genus $g \geq 2$ have points of degree at most $2 g-2$)
Problem 3. Suppose C is an irreducible smooth projective curve of genus 1 over a field k (if you want you can assume k is algebraically closed in your solution, but you should make sure you understand why that assumption is unneeded here). Let L be a line bundle of degree 4 on C. Show that L identifies C with the intersection of two quadric surfaces in \mathbb{P}_{k}^{3}.
Problem 4. Suppose C is an irreducible smooth projective nonhyperelliptic curve over an algebraically closed field k. Let p_{1}, p_{2}, p_{3} be distinct closed points in C. Show that p_{1}, p_{2}, p_{3} are collinear in the canonical embedding of C if and only if there exists a degree 3 morphism $\pi: C \rightarrow \mathbb{P}_{k}^{1}$ with $\pi\left(p_{1}\right)=\pi\left(p_{2}\right)=\pi\left(p_{3}\right)$.
Problem 5. Suppose C is an irreducible smooth projective curve of genus $g \geq 2$ over an algebraically closed field k. Prove that there exists a degree 1 line bundle L on C with $h^{0}(C, L)=0$.
Problem 6. Suppose C is an irreducible smooth projective curve of genus 2 over an algebraically closed field k. Prove that C is trigonal (i.e. there exists a degree 3 morphism $\left.\pi: C \rightarrow \mathbb{P}_{k}^{1}\right)$.

