PROBLEM SET 4 (DUE ON THURSDAY, APRIL 4)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 18.4.K (ample line bundles on projective curves have positive degree)
Problem 2. Exercise 18.6.K (Bezout's Theorem - if you want, you can just consider the case where X is reduced)
Problem 3. Suppose Z_{1}, Z_{2} are closed subschemes of a projective k-scheme X. Show that

$$
\chi\left(Z_{1} \cup Z_{2}, \mathcal{O}_{Z_{1} \cup Z_{2}}\right)=\chi\left(Z_{1}, \mathcal{O}_{Z_{1}}\right)+\chi\left(Z_{2}, \mathcal{O}_{Z_{2}}\right)-\chi\left(Z_{1} \cap Z_{2}, \mathcal{O}_{Z_{1} \cap Z_{2}}\right)
$$

where $Z_{1} \cup Z_{2}$ and $Z_{1} \cap Z_{2}$ are the scheme-theoretic union and intersection of closed subschemes. (In fact, Hilbert polynomials computed with respect to an ample line bundle on the ambient scheme X will satisfy the same identity - compare with Exercise 18.6.P.)

Problem 4. Exercise 18.6.R (arithmetic genus of complete intersection of surfaces in \mathbb{P}^{3} - in this context complete intersection just means that the surfaces being intersected do not share an irreducible component)
Problem 5. Let m, n be positive integers and let $f \in \Gamma\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(m, n)\right)$ be a bihomogeneous polynomial of degree (m, n). Compute the arithmetic geus of the curve $X=V(f)$. Your answer for $(m, n)=(d, d)$ should agree with your answer to the previous problem when $(m, n)=(2, d)$ - why is this? (Hint: use the ideal sheaf sequence for X inside $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Also, the notation $\mathcal{O}(m, n)$ is defined in section 16.4.8.)
Problem 6. Show that for $n \geq 3$, the intersection of any two hypersurfaces in \mathbb{P}_{k}^{3} is connected. (Hint: if X is the intersection, compute $h^{0}\left(X, \mathcal{O}_{X}\right)=1$ using two long exact sequences of cohomology groups).

