PROBLEM SET 2 (DUE ON THURSDAY, MARCH 7)

(All Exercises are references to the November 18, 2017 version of *Foundations of Algebraic Geometry* by R. Vakil.)

- **Problem 1.** Exercise 16.3.H (the projection formula)
- **Problem 2.** Exercise 16.4.J (dimensions of images of maps from projective space)
- **Problem 3.** Exercise 16.5.B (extending over regular codimension 1 sets if you want, instead of writing down a full proof you can just explain how to modify the proof of Theorem 16.5.1)
- **Problem 4.** Exercise 16.6.C (very ample \otimes base-point-free is very ample)
- **Problem 5.** Let $S_{\bullet} = \mathbb{C}[x, y, z, w]/(xw yz)$ be a graded ring, where we take deg $x = \deg y = 0$ and deg $z = \deg w = 1$. Let M_{\bullet} be the graded S_{\bullet} -module given by the ideal (xw) of S_{\bullet} . Let \widetilde{M}_{\bullet} be the corresponding quasicoherent sheaf on Proj S_{\bullet} (as defined in Section 15.1). Show that \widetilde{M}_{\bullet} is a line bundle and compute its base locus. (Hint: Use the affine charts Proj $S_{\bullet} = D(z) \cup D(w)$.) (Addendum: If you prefer, you can view M_{\bullet} as the degree shift $S(-1)_{\bullet}$, so \widetilde{M}_{\bullet} also goes by the name $\mathcal{O}_{\operatorname{Proj} S_{\bullet}}(-1)$.)