PROBLEM SET 2 (DUE ON THURSDAY, MARCH 7)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 16.3.H (the projection formula)
Problem 2. Exercise 16.4.J (dimensions of images of maps from projective space)
Problem 3. Exercise 16.5.B (extending over regular codimension 1 sets - if you want, instead of writing down a full proof you can just explain how to modify the proof of Theorem 16.5.1)
Problem 4. Exercise 16.6.C (very ample \otimes base-point-free is very ample)
Problem 5. Let $S_{\bullet}=\mathbb{C}[x, y, z, w] /(x w-y z)$ be a graded ring, where we take $\operatorname{deg} x=$ $\operatorname{deg} y=0$ and $\operatorname{deg} z=\operatorname{deg} w=1$. Let M_{\bullet} be the graded S_{\bullet}-module given by the ideal $(x w)$ of S_{\bullet}. Let \widetilde{M}_{\bullet} be the corresponding quasicoherent sheaf on Proj S_{\bullet} (as defined in Section 15.1). Show that \widetilde{M}_{\bullet} is a line bundle and compute its base locus. (Hint: Use the affine charts Proj $S_{\bullet}=D(z) \cup D(w)$.) (Addendum: If you prefer, you can view M_{\bullet} as the degree shift $S(-1)$, so $\widetilde{M} \bullet$ also goes by the name $\mathcal{O}_{\operatorname{Proj} S}(-1)$)

