PROBLEM SET 6 (DUE ON THURSDAY, NOV 8)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 7.1.B (fiber products of open embeddings - there is a discussion of fiber products in Section 1.3.6)
Problem 2. Exercise 7.3.K (finite morphisms have finite fibers - you can assume Exercise 7.3.H, but that exercise is worth thinking about as well)

Problem 3. Exercise 7.3.M (integral morphisms are closed - the key here is the Lying Over Theorem (7.2.5), a result in commutative algebra on integral extensions)
Problem 4. Exercise 8.1.H (closed subschemes correspond to quasicoherent ideal sheaves)
Problem 5. A quadric in \mathbb{P}_{k}^{n} is a closed subscheme cut out by a single homogeneous polynomial of degree two (see 8.2.2). Give an example of two quadrics in $\mathbb{P}_{\mathbb{R}}^{2}$ intersecting in a single point, and compute the scheme-theoretic intersection. Then give a second example of this, with scheme-theoretic intersection not isomorphic (as schemes) to that in your first example.

