
PROBLEM SET 1 SOLUTIONS

(These solutions are just meant to explain how I think about each of the problems per-
sonally - there were many ways to think about some of these problems, and many choices to
be made in writing up solutions.)

Problem 1. Any genus 0 curve is isomorphic to P1, so

M0,n = {(x1, . . . , xn) ∈ (P1)n | xi 6= xj}/Aut(P1).

The automorphism group of P1, PGL2, acts strictly 3-transitively, so this is isomorphic to

{(x1, . . . , xn) ∈ (P1)n | x1 = 0, x2 = 1, x3 =∞, xi 6= xj},
which is visibly isomorphic to an open subset of Cn−3 (it is the complement of a bunch of
hyperplanes), which itself is an open subset of Pn−3.

The transposition (13) acts via the Sn-action on this open subset by the Cremona trans-
formation [z0 : · · · : zn−3] 7→ [z−1

0 : · · · : z−1
n−3], which does not extend to the locus where two

or more of the zi are zero. This shows that compactifying M0,n to Pn−3 in this way does not
handle the n marked points symmetrically for n ≥ 5.

Problem 2. Let S be an oriented torus (as a topological space) with a marked point p
and oriented loops e, f ∈ π1(S, p) = H1(S;Z) generating the integral homology of S, with
e · f = 1. Suppose that (X, q) is a Riemann surface with a given orientation-preserving
homeomorphism from (S, p). The universal cover of X is isomorphic to C (as a Riemann
surface) by uniformization, and this isomorphism is unique up to affine transformations z 7→
az+b. Moreover, the deck transformations on this universal cover correspond to translations
on C. Let τe, τf be the translation vectors for the deck transformations corresponding to
the loops e, f ; these are well-defined up to scaling both by a single element of C∗. By the
orientation data e·f = 1, we see that τe/τf is a (well-defined) element of the upper half-plane
H, and this defines a map T1,1 → H.

The mapping class group Mod1,1 can be identified with SL2(Z) = Sp2(Z) via the symplectic
representation defined by acting on the first homology of S. The action of Mod1,1 on T1,1
(defined as a right action) is given by composition of a self-homeomorphism of S with the
homeomorphism between S and X, so the map e 7→ ae+ cf, f 7→ be+ df will send ξ = τe/τf
to (aτe + cτf )/(bτe + dτf ) = (aξ + c)/(bξ + d), which is indeed a right action of SL2(Z) on
H. (You might have gotten the inverse of this if you set things up to have a left action, and
you might have been composed with a conjugation automorphism of SL2(Z) if you chose a
different ordering on your basis - the precise details here aren’t that canonical.)

Problem 3. Fix a topological genus 2 surface S. The isotopy class of the hyperelliptic
involution on a genus 2 Riemann surface then defines a map from T2 = T (S), the Teichmuller
space of isotopy classes of S-marked Riemann surfaces, to Mod2 = Mod(S), the mapping
class group of isotopy classes of self-homeomorphisms of S. This map φ : T2 → Mod2 clearly
respects the action of Mod2 on T2, in the sense that φ(xg) = g−1φ(x)g for any x ∈ T2
and g ∈ Mod2. Thus it suffices to show that φ is a constant map, since then the image
element will be central (and non-trivial since the hyperelliptic involution acts non-trivially
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on first homology). But φ is clearly continuous (e.g. this can be checked locally using the
hyperelliptic description of a genus 2 curve as a double cover of P 1 ramified at 6 points) and
T2 is contractible, hence connected, while Mod2 is a discrete group, so φ is indeed constant.

Problem 4. Computation 1: The forgetful map M2,1 → M2 is an orbifold fiber bundle
with fiber a surface X of genus 2 (informally this means that the fiber over a point with
orbifold structure group G is X/G; formally, this means that the bundle is locally the
quotient of a topological fiber bundle by a finite group acting on both the base and the
total space). This means that χorb(M2,1) = χ(X)χorb(M2) (this multiplicativity follows
from the multiplicativity for topological fiber bundles upon taking quotients), so χorb(M2) =
(1/120)/(−2) = −1/240.

Computation 2: The fact that any genus 2 curve is hyperelliptic via a unique hyperelliptic
involution, combined with the fact that there is a unique double cover of P1 ramified over
any set of six points, implies that M2 and M0,6/S6 are homeomorphic as toplogical spaces.
But as orbifolds they are not isomorphic - the orbifold structure on M2 has an extra factor
of 2 everywhere thanks to the hyperelliptic involution. (One way to think about this: the
orbifold Euler characteristic of M2 is defined via M2 = T2/Mod2, but the hyperelliptic
involution in Mod2 actually acts trivially on T2 so it affects the orbifold structure of M2 as
well as its orbifold Euler characteristic without affecting the topology.) The result is that
χorb(M2) = χorb(M0,6/S6)/2 = χ(M0,6)/1440. It remains to compute the Euler characteristic
of M0,6, which can be done by using the fact that M0,6 is the total space of a fiber bundle
over M0,5 with fiber a sphere with five punctures, and so on: χ(M0,6) = (−3)(−2)(−1) = −6.
Thus χorb(M2) = −6/1440 = −1/240.

Problem 5. Solution 1 (group cohomology): (We do the computation in cohomology with
integer coefficients - sorry for any confusion caused by using Q-coefficients in the problem
statement, but the answer being zero with integer coefficients implies that it will also be zero
with Q-coefficients.) The class ψ (up to sign) corresponds to the central extension of Modg,1

given by the capping exact sequence

1→ Z→ Mod1
g → Modg,1 → 1.

Call the first (nontrivial) map in this sequence f ; the second map is the capping homomor-
phism, called c. We want to pull back this class by c, so the result will correspond to the
pullback of the central extension:

1→ Z→ Mod1
g×Modg,1 Mod1

g → Mod1
g → 1,

where the middle group in the sequence is the fiber product of groups, the first map is
(f, 0), and the second map is the projection to the second component. This extension has
an obvious section coming from the diagonal homomorphism Mod1

g → Mod1
g×Modg,1 Mod1

g,
so it splits and hence corresponds to the zero class in cohomology.

Solution 2 (topology): We think about the surface bundle classifying spaces BMod1
g and

BModg,1 and their universal bundles. Let S1
g be the universal bundle on BMod1

g (so the fibers
are surfaces with one boundary component, and the bundle is a trivial circle bundle when
restricted to the boundary components of the fibers), and let Sg,1 be the universal bundle on
BModg,1 (i.e. a surface bundle with a given section). Then a map BMod1

g → BModg,1 that
induces the capping homomorphism on fundamental groups must have the property that the
pullback of Sg,1 is isomorphic to the surface bundle given by capping off the boundary of S1

g
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(and taking a section given by a marked point in the disc that you use to cap it). Then the
vertical tangent bundle to Sg,1 pulls back to (something isomorphic to) the vertical tangent
bundle to the capped S1

g , which is the vertical tangent bundle to a trivial disc bundle, hence
a trivial bundle. Therefore the pullback of ψ, the first Chern class of the vertical tangent
bundle to Sg,1, is the first Chern class of a trivial bundle, hence zero.
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