PROBLEM SET 1 SOLUTIONS

(These solutions are just meant to explain how I think about each of the problems personally - there were many ways to think about some of these problems, and many choices to be made in writing up solutions.)
Problem 1. Any genus 0 curve is isomorphic to \mathbb{P}^{1}, so

$$
M_{0, n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n} \mid x_{i} \neq x_{j}\right\} / \operatorname{Aut}\left(\mathbb{P}^{1}\right)
$$

The automorphism group of $\mathbb{P}^{1}, \mathrm{PGL}_{2}$, acts strictly 3 -transitively, so this is isomorphic to

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n} \mid x_{1}=0, x_{2}=1, x_{3}=\infty, x_{i} \neq x_{j}\right\}
$$

which is visibly isomorphic to an open subset of \mathbb{C}^{n-3} (it is the complement of a bunch of hyperplanes), which itself is an open subset of \mathbb{P}^{n-3}.

The transposition (13) acts via the S_{n}-action on this open subset by the Cremona transformation $\left[z_{0}: \cdots: z_{n-3}\right] \mapsto\left[z_{0}^{-1}: \cdots: z_{n-3}^{-1}\right]$, which does not extend to the locus where two or more of the z_{i} are zero. This shows that compactifying $M_{0, n}$ to \mathbb{P}^{n-3} in this way does not handle the n marked points symmetrically for $n \geq 5$.

Problem 2. Let S be an oriented torus (as a topological space) with a marked point p and oriented loops $e, f \in \pi_{1}(S, p)=H_{1}(S ; \mathbb{Z})$ generating the integral homology of S, with $e \cdot f=1$. Suppose that (X, q) is a Riemann surface with a given orientation-preserving homeomorphism from (S, p). The universal cover of X is isomorphic to \mathbb{C} (as a Riemann surface) by uniformization, and this isomorphism is unique up to affine transformations $z \mapsto$ $a z+b$. Moreover, the deck transformations on this universal cover correspond to translations on \mathbb{C}. Let τ_{e}, τ_{f} be the translation vectors for the deck transformations corresponding to the loops e, f; these are well-defined up to scaling both by a single element of \mathbb{C}^{*}. By the orientation data $e \cdot f=1$, we see that τ_{e} / τ_{f} is a (well-defined) element of the upper half-plane \mathbb{H}, and this defines a map $T_{1,1} \rightarrow \mathbb{H}$.

The mapping class group $\operatorname{Mod}_{1,1}$ can be identified with $\mathrm{SL}_{2}(\mathbb{Z})=\mathrm{Sp}_{2}(\mathbb{Z})$ via the symplectic representation defined by acting on the first homology of S. The action of $\operatorname{Mod}_{1,1}$ on $T_{1,1}$ (defined as a right action) is given by composition of a self-homeomorphism of S with the homeomorphism between S and X, so the map $e \mapsto a e+c f, f \mapsto b e+d f$ will send $\xi=\tau_{e} / \tau_{f}$ to $\left(a \tau_{e}+c \tau_{f}\right) /\left(b \tau_{e}+d \tau_{f}\right)=(a \xi+c) /(b \xi+d)$, which is indeed a right action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{H}. (You might have gotten the inverse of this if you set things up to have a left action, and you might have been composed with a conjugation automorphism of $\mathrm{SL}_{2}(\mathbb{Z})$ if you chose a different ordering on your basis - the precise details here aren't that canonical.)

Problem 3. Fix a topological genus 2 surface S. The isotopy class of the hyperelliptic involution on a genus 2 Riemann surface then defines a map from $T_{2}=T(S)$, the Teichmuller space of isotopy classes of S-marked Riemann surfaces, to $\operatorname{Mod}_{2}=\operatorname{Mod}(S)$, the mapping class group of isotopy classes of self-homeomorphisms of S. This map $\phi: T_{2} \rightarrow \operatorname{Mod}_{2}$ clearly respects the action of Mod_{2} on T_{2}, in the sense that $\phi(x g)=g^{-1} \phi(x) g$ for any $x \in T_{2}$ and $g \in \operatorname{Mod}_{2}$. Thus it suffices to show that ϕ is a constant map, since then the image element will be central (and non-trivial since the hyperelliptic involution acts non-trivially
on first homology). But ϕ is clearly continuous (e.g. this can be checked locally using the hyperelliptic description of a genus 2 curve as a double cover of P^{1} ramified at 6 points) and T_{2} is contractible, hence connected, while Mod_{2} is a discrete group, so ϕ is indeed constant.

Problem 4. Computation 1: The forgetful map $M_{2,1} \rightarrow M_{2}$ is an orbifold fiber bundle with fiber a surface X of genus 2 (informally this means that the fiber over a point with orbifold structure group G is X / G; formally, this means that the bundle is locally the quotient of a topological fiber bundle by a finite group acting on both the base and the total space). This means that $\chi_{\text {orb }}\left(M_{2,1}\right)=\chi(X) \chi_{\text {orb }}\left(M_{2}\right)$ (this multiplicativity follows from the multiplicativity for topological fiber bundles upon taking quotients), so $\chi_{\text {orb }}\left(M_{2}\right)=$ $(1 / 120) /(-2)=-1 / 240$.

Computation 2: The fact that any genus 2 curve is hyperelliptic via a unique hyperelliptic involution, combined with the fact that there is a unique double cover of \mathbb{P}^{1} ramified over any set of six points, implies that M_{2} and $M_{0,6} / S_{6}$ are homeomorphic as toplogical spaces. But as orbifolds they are not isomorphic - the orbifold structure on M_{2} has an extra factor of 2 everywhere thanks to the hyperelliptic involution. (One way to think about this: the orbifold Euler characteristic of M_{2} is defined via $M_{2}=T_{2} / \operatorname{Mod}_{2}$, but the hyperelliptic involution in Mod_{2} actually acts trivially on T_{2} so it affects the orbifold structure of M_{2} as well as its orbifold Euler characteristic without affecting the topology.) The result is that $\chi_{\text {orb }}\left(M_{2}\right)=\chi_{\text {orb }}\left(M_{0,6} / S_{6}\right) / 2=\chi\left(M_{0,6}\right) / 1440$. It remains to compute the Euler characteristic of $M_{0,6}$, which can be done by using the fact that $M_{0,6}$ is the total space of a fiber bundle over $M_{0,5}$ with fiber a sphere with five punctures, and so on: $\chi\left(M_{0,6}\right)=(-3)(-2)(-1)=-6$. Thus $\chi_{\text {orb }}\left(M_{2}\right)=-6 / 1440=-1 / 240$.

Problem 5. Solution 1 (group cohomology): (We do the computation in cohomology with integer coefficients - sorry for any confusion caused by using \mathbb{Q}-coefficients in the problem statement, but the answer being zero with integer coefficients implies that it will also be zero with \mathbb{Q}-coefficients.) The class ψ (up to sign) corresponds to the central extension of $\operatorname{Mod}_{g, 1}$ given by the capping exact sequence

$$
1 \rightarrow \mathbb{Z} \rightarrow \operatorname{Mod}_{g}^{1} \rightarrow \operatorname{Mod}_{g, 1} \rightarrow 1
$$

Call the first (nontrivial) map in this sequence f; the second map is the capping homomorphism, called c. We want to pull back this class by c, so the result will correspond to the pullback of the central extension:

$$
1 \rightarrow \mathbb{Z} \rightarrow \operatorname{Mod}_{g}^{1} \times_{\operatorname{Mod}_{g, 1}} \operatorname{Mod}_{g}^{1} \rightarrow \operatorname{Mod}_{g}^{1} \rightarrow 1
$$

where the middle group in the sequence is the fiber product of groups, the first map is $(f, 0)$, and the second map is the projection to the second component. This extension has an obvious section coming from the diagonal homomorphism $\operatorname{Mod}_{g}^{1} \rightarrow \operatorname{Mod}_{g}^{1} \times \operatorname{Mod}_{g, 1} \operatorname{Mod}_{g}^{1}$, so it splits and hence corresponds to the zero class in cohomology.

Solution 2 (topology): We think about the surface bundle classifying spaces BMod_{g}^{1} and $\operatorname{BMod}_{g, 1}$ and their universal bundles. Let S_{g}^{1} be the universal bundle on BMod_{g}^{1} (so the fibers are surfaces with one boundary component, and the bundle is a trivial circle bundle when restricted to the boundary components of the fibers), and let $S_{g, 1}$ be the universal bundle on $\operatorname{BMod}_{g, 1}$ (i.e. a surface bundle with a given section). Then a map $\mathrm{BMod}_{g}^{1} \rightarrow \mathrm{BMod}_{g, 1}$ that induces the capping homomorphism on fundamental groups must have the property that the pullback of $S_{g, 1}$ is isomorphic to the surface bundle given by capping off the boundary of S_{g}^{1}
(and taking a section given by a marked point in the disc that you use to cap it). Then the vertical tangent bundle to $S_{g, 1}$ pulls back to (something isomorphic to) the vertical tangent bundle to the capped S_{g}^{1}, which is the vertical tangent bundle to a trivial disc bundle, hence a trivial bundle. Therefore the pullback of ψ, the first Chern class of the vertical tangent bundle to $S_{g, 1}$, is the first Chern class of a trivial bundle, hence zero.

