PROBLEM SET 7 (DUE ON THURSDAY, APRIL 8)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 19.11.B (a map of projective varieties not arising from a map of (regraded) graded rings)
Problem 2. Suppose (E, p) is a (smooth) elliptic curve in Weierstrass form $y^{2}=x^{3}+a x+b$ (along with the point at infinity p, so really $E=\operatorname{Proj} k[x, y, z] /\left(y^{2} z-x^{3}-\right.$ $\left.a x z^{2}-b z^{3}\right)$). Show that the rational section $d x / y$ of $\Omega_{E / k}$ actually has no zeroes or poles in E, so it generates $\Omega_{E / k} \cong \mathcal{O}_{E}$.
Problem 3. Let $\iota: C \rightarrow \mathbb{P}_{k}^{2}$ be the inclusion of a smooth plane curve of degree $d>0$. Let $\mathcal{F}=\iota^{*} \Omega_{\mathbb{P}^{2} / k}$, a rank 2 vector bundle on C. Compute the Euler characteristic $\chi(C, \mathcal{F})$.
Problem 4. Exercise 21.5.D $\left(h^{0}\left(X, K_{X}\right)\right.$ for a degree d surface X in \mathbb{P}^{3}. Hint: use adjunction to compute K_{X} as the restriction of a line bundle on \mathbb{P}^{3}, then pushforward to \mathbb{P}^{3} and compute cohomology there using a long exact sequence and the known values of $h^{i}\left(\mathbb{P}^{3}, \mathcal{O}(m)\right)$.)

