PROBLEM SET 5 (DUE ON TUESDAY, MARCH 16)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 18.6.K (Bezout's Theorem - if you want, you can just consider the case where X is reduced)
Problem 2. Suppose Z_{1}, Z_{2} are closed subschemes of a projective k-scheme X. Show that

$$
\chi\left(Z_{1} \cup Z_{2}, \mathcal{O}_{Z_{1} \cup Z_{2}}\right)=\chi\left(Z_{1}, \mathcal{O}_{Z_{1}}\right)+\chi\left(Z_{2}, \mathcal{O}_{Z_{2}}\right)-\chi\left(Z_{1} \cap Z_{2}, \mathcal{O}_{Z_{1} \cap Z_{2}}\right)
$$

where $Z_{1} \cup Z_{2}$ and $Z_{1} \cap Z_{2}$ are the scheme-theoretic union and intersection of closed subschemes. (In fact, Hilbert polynomials computed with respect to an ample line bundle on the ambient scheme X will satisfy the same identity - compare with Exercise 18.6.P.)

Problem 3. Let $X \subset \mathbb{P}_{k}^{3}$ be the union of three distinct lines that all pass through a single point. Is this enough information to determine the arithmetic genus of X ?
Problem 4. Exercise 18.6.R (arithmetic genus of a complete intersection of surfaces in \mathbb{P}^{3} - in this context complete intersection just means that the surfaces being intersected do not share an irreducible component)
Problem 5. Let m, n be positive integers and let $f \in H^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(m, n)\right)$ be a bihomogeneous polynomial of degree (m, n). Compute the arithmetic genus of the curve $X=V(f)$. Your answer for $(m, n)=(d, d)$ should agree with your answer to the previous problem when $(m, n)=(2, d)$ - why is this? (Hint: use the ideal sheaf sequence for X inside $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Also, the notation $\mathcal{O}(m, n)$ is defined in section 16.4.8.)
Problem 6. Show that for $n \geq 3$, the intersection of any two hypersurfaces in \mathbb{P}_{k}^{n} is connected. (Hint: if X is the intersection, compute $h^{0}\left(X, \mathcal{O}_{X}\right)=1$ using two long exact sequences of cohomology groups).

