PROBLEM SET 9 (DUE ON THURSDAY, NOV 9)

(All Exercises are references to the July 31, 2023 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 4.5.H(a) (prime ideals of $\left.\left(S_{\bullet}\left[\frac{1}{f}\right]\right)_{0}\right)$
Problem 2. Is Proj $k[x, y] /\left(x^{2} y\right)$ affine, where x and y have degree 1? Is it reduced?
Problem 3. Suppose that X is a closed subscheme of Proj S_{\bullet} for some graded ring S_{\bullet} that is finitely generated by elements of degree 1 (as an S_{0}-algebra). Show that X is isomorphic to $\operatorname{Proj}\left(S_{\bullet} / I\right)$ for some homogeneous ideal I. (Hint: X will be cut out by a collection of ideals, each in a ring corresponding to one affine open $D(f)$, compatible with respect to restrictions to $D(f g) \subset D(f)$; you need to piece these ideals together to construct a single homogeneous ideal in S. .)
Problem 4. A quadric $V(f)$ in \mathbb{P}_{k}^{n} is a closed subscheme cut out by a single homogeneous polynomial f of degree two (see 9.3.2). Give an example of two quadrics in $\mathbb{P}_{\mathbb{R}}^{2}$ intersecting in a single point, and compute the scheme-theoretic intersection. Then give a second example of this, with scheme-theoretic intersection not isomorphic (as schemes) to that in your first example. Then give a third example with intersection not isomorphic to either of the first two! (Changes from last week's problem: \mathbb{P}^{2} instead of $\AA^{2} ; \mathbb{R}$ instead of \mathbb{C}; three examples instead of two examples. It may be helpful to note that Bezout's theorem now applies and says that the intersection must be of the form $\operatorname{Spec} A$, where A is an \mathbb{R}-algebra that is 4-dimensional as an \mathbb{R}-vector space and has exactly one prime ideal.)

