PROBLEM SET 8 (DUE ON THURSDAY, NOV 2)

(All Exercises are references to the July 31, 2023 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. (a) Construct a morphism

$$
\pi_{1}: \mathbb{A}_{k}^{n+1} \backslash\{(0, \ldots, 0)\} \rightarrow \mathbb{P}_{k}^{n}
$$

that induces the classical quotient map $k^{n+1} \backslash\{0\} \rightarrow \mathbb{P}_{k}^{n}(k)$ on k-valued points. Is π_{1} affine?
(b) Extend π_{1} to a morphism

$$
\pi_{2}: \mathbb{P}_{k}^{n+1} \backslash\{[1: 0: \cdots: 0]\} \rightarrow \mathbb{P}_{k}^{n}
$$

Is π_{2} affine?
(c) Set $k=\mathbb{C}$ and $n=1$. Let $X=V\left(x_{0} x_{1}-x_{2}^{2}\right) \subseteq \mathbb{P}_{\mathbb{C}}^{2}$, a projective hypersurface of degree 2 passing through $[1: 0: \cdots: 0]$. Restrict π_{2} to a morphism

$$
\pi_{3}: X \backslash\{[1: 0: \cdots: 0]\} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}
$$

Show that π_{3} is an open embedding.
(d) Extend π_{3} to an isomorphism

$$
\pi_{4}: X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}
$$

Problem 2. Exercise 9.1.I(d) (an example of scheme-theoretic intersection not distributing over scheme-theoretic union)
Problem 3. A quadric in \mathbb{A}_{k}^{n} is a closed subscheme $V(f)$ cut out by a single polynomial of degree two. Give an example of two quadrics in $\mathbb{A}_{\mathbb{C}}^{2}$ intersecting in a single point (and nowhere else), and compute the scheme-theoretic intersection. Then give a second example of this, with scheme-theoretic intersection not isomorphic (as schemes) to that in your first example.

