PROBLEM SET 10 (DUE ON THURSDAY, NOV 16)

(All Exercises are references to the July 31, 2023 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Let $X=\operatorname{Proj} \mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /\left(x_{0} x_{3}-x_{1} x_{2}\right)$, a quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$. Describe a closed embedding $\iota: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X$ with the property that the image of ι is not contained in any plane in $\mathbb{P}_{\mathbb{C}}^{3}$. Then describe a morphism $\pi: X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with the property that $\pi \circ \iota$ is the identity morphism on $\mathbb{P}_{\mathbb{C}}^{1}$. What do the fibers of π over closed points look like, as closed subsets of $\mathbb{P}_{\mathbb{C}}^{3}$? (Hint: Veronese embeddings and Exercise 9.3.L (rulings on the quadric surface) might both be helpful here.)
Problem 2. Exercise 10.3.F (blowing up a point in \mathbb{A}_{k}^{2} - it might help to note that $\mathbb{A}_{k}^{2} \times{ }_{k} \mathbb{P}_{k}^{1}$ is isomorphic to Proj $k[x, y, u, v]$, where x, y have degree 0 and u, v have degree 1)

Problem 3. Exercise 10.2.J (distinct morphisms remain distinct upon extending the base field)
Problem 4. Describe two morphisms $\mathbb{A}_{\mathbb{C}}^{1} \rightarrow \mathbb{A}_{\mathbb{C}}^{1}$ such that the fiber product $X=\mathbb{A}_{\mathbb{C}}^{1} \times_{\mathbb{A}_{\mathbb{C}}^{1}} \mathbb{A}_{\mathbb{C}}^{1}$ using these morphisms has exactly two irreducible components and such that the two irreducible components intersect in exactly two points.

