PROBLEM SET 9 (DUE ON THURSDAY, NOV 10)

(All Exercises are references to the August 29, 2022 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Suppose that X is a closed subscheme of Proj S_{\bullet} for some graded ring S_{\bullet} that is finitely generated by elements of degree 1 (as an S_{0}-algebra). Show that X is isomorphic to $\operatorname{Proj}\left(S_{\bullet} / I\right)$ for some homogeneous ideal I. (Hint: X will be cut out by a collection of ideals, each in a ring corresponding to one affine open $D(f)$, compatible with respect to restrictions to $D(f g) \subset D(f)$; you need to piece these ideals together to construct a single homogeneous ideal in S. .)
Problem 2. A quadric in \mathbb{P}_{k}^{n} is a closed subscheme cut out by a single homogeneous polynomial of degree two (see 9.3.2). Give an example of two quadrics in $\mathbb{P}_{\mathbb{R}}^{2}$ intersecting in a single point, and compute the scheme-theoretic intersection. Then give a second example of this, with scheme-theoretic intersection not isomorphic (as schemes) to that in your first example. Then give a third example with intersection not isomorphic to either of the first two! (Changes from last week's problem: \mathbb{P}^{2} instead of $\mathbb{A}^{2} ; \mathbb{R}$ instead of \mathbb{C}; three examples instead of two examples. It may be helpful to note that Bezout's theorem now applies and says that the intersection must be of the form Spec A, where A is an \mathbb{R}-algebra that is 4-dimensional as an \mathbb{R}-vector space and has exactly one prime ideal.)
Problem 3. Let $X=\operatorname{Proj} \mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /\left(x_{0} x_{3}-x_{1} x_{2}\right)$, a quadric surface in $\mathbb{P}_{\mathbb{C}}^{3}$. Describe a closed embedding $\iota: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X$ with the property that the image of ι is not contained in any plane in $\mathbb{P}_{\mathbb{C}}^{3}$. Then describe a morphism $\pi: X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with the property that $\pi \circ \iota$ is the identity morphism on $\mathbb{P}_{\mathbb{C}}^{1}$. What do the fibers of π over closed points look like, as closed subsets of $\mathbb{P}_{\mathbb{C}}^{3}$? (Hint: Veronese embeddings and Exercise 9.3.L (rulings on the quadric surface) might both be helpful here.)

