PROBLEM SET 9 (DUE ON THURSDAY, NOV 10)

(All Exercises are references to the August 29, 2022 version of *Foundations of Algebraic Geometry* by R. Vakil.)

- **Problem 1.** Suppose that X is a closed subscheme of $\operatorname{Proj} S_{\bullet}$ for some graded ring S_{\bullet} that is finitely generated by elements of degree 1 (as an S_0 -algebra). Show that X is isomorphic to $\operatorname{Proj}(S_{\bullet}/I)$ for some homogeneous ideal I. (Hint: X will be cut out by a collection of ideals, each in a ring corresponding to one affine open D(f), compatible with respect to restrictions to $D(fg) \subset D(f)$; you need to piece these ideals together to construct a single homogeneous ideal in S_{\bullet} .)
- **Problem 2.** A quadric in \mathbb{P}_k^n is a closed subscheme cut out by a single homogeneous polynomial of degree two (see 9.3.2). Give an example of two quadrics in $\mathbb{P}_{\mathbb{R}}^2$ intersecting in a single point, and compute the scheme-theoretic intersection. Then give a second example of this, with scheme-theoretic intersection not isomorphic (as schemes) to that in your first example. Then give a third example with intersection not isomorphic to either of the first two! (Changes from last week's problem: \mathbb{P}^2 instead of \mathbb{A}^2 ; \mathbb{R} instead of \mathbb{C} ; three examples instead of two examples. It may be helpful to note that Bezout's theorem now applies and says that the intersection must be of the form Spec A, where A is an \mathbb{R} -algebra that is 4-dimensional as an \mathbb{R} -vector space and has exactly one prime ideal.)
- **Problem 3.** Let $X = \operatorname{Proj} \mathbb{C}[x_0, x_1, x_2, x_3]/(x_0x_3 x_1x_2)$, a quadric surface in $\mathbb{P}^3_{\mathbb{C}}$. Describe a closed embedding $\iota : \mathbb{P}^1_{\mathbb{C}} \to X$ with the property that the image of ι is not contained in any plane in $\mathbb{P}^3_{\mathbb{C}}$. Then describe a morphism $\pi : X \to \mathbb{P}^1_{\mathbb{C}}$ with the property that $\pi \circ \iota$ is the identity morphism on $\mathbb{P}^1_{\mathbb{C}}$. What do the fibers of π over closed points look like, as closed subsets of $\mathbb{P}^3_{\mathbb{C}}$? (Hint: Veronese embeddings and Exercise 9.3.L (rulings on the quadric surface) might both be helpful here.)