PROBLEM SET 11 (DUE ON THURSDAY, DEC 1)

(All Exercises are references to the August 29, 2022 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 11.3.G (sections of morphisms - you may want to read section 9.2 on locally closed embeddings)
Problem 2. Exercise 11.4.B (when are morphisms determined by where they send closed points? - you may want to read the preceding exercise/minor remarks and also look at Exercises 3.6.J (on an older homework) and 5.3.F (related))
Problem 3. Exercise 11.4.E (graphs of rational maps)
Problem 4. Describe the graph of the rational map $\mathbb{A}_{\mathbb{C}}^{2} \rightarrow \mathbb{A}_{\mathbb{C}}^{1}$ given by x / y. Can you tell from this graph that this rational map cannot extend to a morphism $\mathbb{A}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$?
Problem 5. Let $n \geq 2$ be an integer. Compute the (maximal) domain of definition of the generalized Cremona transformation

$$
C: \mathbb{P}_{\mathbb{C}}^{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{n},
$$

a rational map given by $\left[x_{0}: \cdots: x_{n}\right] \mapsto\left[x_{0}^{-1}: \cdots: x_{n}^{-1}\right]$ (on closed points with $x_{0} \cdots x_{n} \neq 0$).

