PROBLEM SET 8 (DUE ON THURSDAY, NOV 5)

(All Exercises are references to the November 18, 2017 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 4.5.E(a) (prime ideals of $\left.\left(S_{\bullet}\left[\frac{1}{f}\right]\right)_{0}\right)$
Problem 2. Exercise 8.2.C (closed embeddings of projective schemes)
Problem 3. Is Proj $k[x, y] /\left(x^{2} y\right)$ affine, where x and y have degree 1? Is it reduced?
Problem 4. A quadric in \mathbb{P}_{k}^{n} is a closed subscheme cut out by a single homogeneous polynomial of degree two (see 8.2.2). Give an example of two quadrics in $\mathbb{P}_{\mathbb{R}}^{2}$ intersecting in a single point, and compute the scheme-theoretic intersection. Then give a second example of this, with scheme-theoretic intersection not isomorphic (as schemes) to that in your first example. Then give a third example with intersection not isomorphic to either of the first two! (Changes from last week's problem: \mathbb{P}^{2} instead of $\mathbb{A}^{2} ; \mathbb{R}$ instead of \mathbb{C}; three examples instead of two examples. It may be helpful to note that Bezout's theorem now applies and says that the intersection must be of the form $\operatorname{Spec} A$, where A is an \mathbb{R}-algebra that is 4 -dimensional as an \mathbb{R}-vector space and has exactly one prime ideal.)

