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Collapsar Model for GRBs
(Woosley 1993; Paczynski 1998; MacFadyen & Woosley 1999)
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(a) Model JB: 0.7 s
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(b) Model JB: 3.5 s

Zhang, Woosley, MacFadyen (2003)

• Core of a massive star collapses into black hole.

• Rotating stellar material falls towards the black hole
and forms an accretion disk, Ṁ ∼ 0.1MSun/sec !

• Accretion disk cools by emitting neutrinos. Neutrinos
annihilate above the disk and form a relativistically-hot
e+ − e− fireball.

• The fireball drives a hydrodynamic jet through the star.

• High-pressure cocoon forms behind the shock and keeps
the jet collimated.



Role of Magnetic Fields in Collapsars

• Strong magnetic fields (B ∼ 1015 Gauss) unavoidably
generated during explosions of rotating massive stars
(long-duration GRBs and core-collapse SNe)
e.g., van Putten & Levinson (2003); Akiyama et al. (2003);

Wheeler et al. (2005)

• These strong magnetic fields change explosion dynam-
ics and also affect neutrino transport
e.g., Paczynski 1998; MacFadyen & Woosley (1999); van Put-

ten & Levinson (2003); Akiyama et al. (2003); Wheeler et al.

(2005); Proga et al. (2003); Sawai et al. (2005); Ardel-

jan et al. (2005)

• There are observational and theoretical reasons to be-
lieve that GRB outflows are magnetically-dominated
e.g., Lyutikov & Blandford (2003); Lyutikov (2004); Gian-

nios & Spruit (2004); Spruit & Drenkhahn (2004)



Magnetic Tower Model: a Sketch
(Lynden-Bell 1996)
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Magnetic Tower Model: Scalings

input parameters: Ψ, ∆Ω, Pext ⇒

tower parameters: B0, R0, Vtop

• magnetic flux conservation:

B0 ∼
Ψ

R2
0

• horizontal pressure balance:

B2
0

8π
∼ Pext

• differential rotation:

N = ∆Ωt/2π =
Ψtor

Ψpol
⇒ Vtop ∼ ∆ΩR0



Magnetic Towers in Simulations

Sequence of Magnetostatic
Equilibria:

Li, Lovelace, Finn, Colgate (2001)
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Figure 2 describes our overall physical picture with two
di†erent physical regimes. For the plasma0 ¹ ( ¹ (

c
,

pressure is dominant. This region is labeled as PP. For
the magnetic pressure dominates, and the(

c
¹ ( ¹ 1,

region is force-free (labeled as FF). So we have e†ectively
made two ideal MHD Ñuids, one (PP) has a plasma b ] O

and the other (FF) has b \ 0. The key question we are
addressing is ““ How does the shape of boundary( \ (

c
change while Ðeld lines are being twisted by the Keplerian
disk rotation? ÏÏ In other words, the boundary between the
PP and FF regions evolves according to both the expansion
and ““ pushing ÏÏ from the FF region and the ““ hindrance ÏÏ of
the plasma pressure.

Although some details may di†er, we generally Ðnd that
magnetic Ðelds evolve in the following manner : (1) in the FF
region, Ðeld lines expand primarily toward the large radius
along an angle (from the z-axis) of h D 45¡È60¡ ; (2) in the
PP region, Ðeld lines expand predominantly vertically
(along the z-axis) with some slight radial expansion ; (3)
more twist causes further expansion along the z-axis but
subject to a break-down of the magnetostatic, equilibrium
assumption. We now discuss these features in detail.

4.1. Equilibrium Sequence with Increasing Twist

Figure 3 shows the evolution of magnetic Ðelds in the
poloidal plane as twist is added, with t \ 0, 1, 2, and 4 turns,
respectively. The Ðeld lines shown are evenly spaced in

with the outermost line having ( B 10~4 and thelog
10

((),
innermost line having ( B 0.5. Here we use the term
““ outer ÏÏ to refer to Ðeld lines in the PP region, which orig-
inate from the smallest radii and return back to disk at the
largest radii. The term ““ inner ÏÏ refers to Ðeld lines around

FIG. 2.ÈOverall physical picture with two di†erent regimes, separated
by (thick-dashed line). The region labeled PP is dominated by the( \ (

c
plasma pressure with (the boundary at r \ 1). A tiny fraction(

c
º ( º 0

of the total poloidal Ñux is in this region. The region labeled FF(\(
c
)

(force-free) is dominated by the magnetic pressure with (the O(
c
¹ ( ¹ 1

point). Most of the poloidal Ñux is contained in this region. The(1 [ (
c
)

key question we are addressing is the response of the boundary to( \ (
c

the twisting of Ðeld lines by the Keplerian disk.

FIG. 3.ÈThe ““ evolution ÏÏ of the poloidal Ðeld lines with increasing
twist as solutions of eq. (13) in a ln rÈspherical coordinate for t \ 0, 1, 2,
and 4, respectively. (We present the results in a smaller R-z plane for
clarity.) The contours are displayed evenly in logarithmically spaced inter-
vals (10~4 ¹ ( ¹ 1). The outer Ðeld lines have expanded more strongly
along the z-axis (from z B 0.1 to 0.3) than in the radial direction (from
R B 0.1 to 0.15).

the O point in the FF region. Consequently, because the
Ðeld lines are twisted according to the Keplerian rotation
(largest rotation at the smallest radius), the outer Ðeld lines
show substantial ““ movement ÏÏ due to the added twist,
whereas Ðeld lines around the O point show little change.

The corresponding results for the poloidal current H(()
and the resultant twist *' are plotted in Figure 4. It is
interesting to note that H(() can be approximated by two
power laws of (, where H(() P ( when and Ñat-( ¹ (

c
tens somewhat for The twist shown in the lower( [ (

c
.

panel is derived by integrating along each Ðeld line. They
indeed follow the input proÐle closely owing to Keplerian
rotation.

4.2. Role of External Plasma Pressure in Collimation

The striking feature of the sequence of equilibria in
Figure 3 is the way the outer Ðeld lines expand. To best
understand this behavior, we separate the Ðeld lines into
two groups according to the ratio of These two(/(

c
.

Axisymmetric
MHD Simulations:

Kato, Hayashi, Matsumoto (2004)

4 Kato, Hayashi, & Matsumoto
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FIG. 2.— (a) Magnetic field configuration of the magnetic tower in r-z plane (top panels). Solid curves show poloidal magnetic field lines projected onto
this plane. The color contour shows the strength of toroidal magnetic fields and arrows show velocity vectors. The alphabetical symbols indicate the individual
magnetic islands. (b) The bottom panel shows the 3-D image of the magnetic field lines (solid lines) and density distribution in the equatorial plane (color
contour).

face ’A’. It corresponds to the region between the contact dis-
continuity (CD) and the jet terminal shock (JTS). We should
remark that the bow shock ahead of the working surface is
not visible because the sound speed of the ambient plasma
(vs,∗ ∼ 0.4) is larger than the propagation speed of the jet.

4. DISCUSSION

In this letter, we have demonstrated that highly collimated
magnetic towers are formed along the rotation axis of the ac-
cretion disk surrounding a weakly magnetized neutron star.
We also found that hot plasmoids created by the intermittent
magnetic reconnections are injected into the magnetic tower
(Figure 1). The magnetic towers are confined to the radius
where the magnetic pressure of the expanding magnetic loops

is comparable to the gas pressure of the ambient plasma.
Recently, Poynting jet, in which the energy and angular

momentum are carried predominantly by the electromagnetic
field, has been studied numerically by Romanova et al. (1998)
and Ustyugova et al. (2000). The magnetic tower jet is a
Poynting jet, because the Poynting flux dominates the energy
flux of the bulk flow inside the jet in our simulation (Figure
3b). The electromagnetic extraction of angular momentum
from the disk drives the accretion of the disk material. It
is interesting to compare the amount of angular momentum
extracted electromagnetically by the jet and the angular mo-
mentum transported inside the disk due to the magnetic tur-
bulence driven by the magneto-rotational instability (MRI).
We have to carry out three-dimensional MHD simulations to
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Figure 3. Images of plasma evolution (shot 1210; peak αgun ≈ 66 m
−1
) in which a plasma column forms and persists

for many Alfv´en transit times, illustrating the magnetic topology required for an astrophysical jet.

Figure 4. Images of plasma evolution (shot 1233; peak αgun ≈ 71 m
−1
) in which a helical instability, likely a

current-driven kink, develops on the ideal MHD timescale, illustrating one possible source of jet internal structure.

the Z direction at a speed of approximately 6 × 10
4

m/s,

a fraction of the estimated VA. It is likely that a sphero-

mak configuration is formed here; this was verified previ-

ously with direct measurement of B on an experiment with

a non-planar source but similar helicity injection (Yee & Bel-

lan 2000). This result supports the idea of field line recon-

nection above accretion discs, which can lead to disc winds

and also episodic high energy flaring.

5 DISCUSSION

The results above show three distinct plasma configura-

tions having accretion disc characteristics. All three con-

figurations result from the same plasma formation process,

the only difference being the peak value of the parameter

αgun = µ0Igun/ψgun. Figure 7 illustrates this dependence by

placing different plasmas into Igun–ψgun parameter space,

with detachment at larger αgun, attached columns at lower

αgun, and kinked columns near αcrit ≈ 60–70 m
−1
.

This αgun dependence has many implications. Most im-

portantly, it suggests that the plasma configurations asso-

ciated with accretion discs and jets are related to Taylor

relaxation theory (Taylor 1986), which is a description of

how a plasma evolves as magnetic energy is minimized sub-

ject to the constraint of constant magnetic helicity. This

process can be cast as a variational problem, and it can

be shown that the resulting magnetic field configuration

satisfies Eq. (2) with uniform α. In the case of a driven

plasma like an astrophysical jet, ∇α will be non-zero, and

magnetic helicity will flow from regions of high to low α,

which tends to “relax” the plasma toward uniform α (Bel-

lan 2000). The evolution of many laboratory plasmas, in-

cluding spheromaks, can be understood in terms of Taylor

relaxation. For example, it has been shown that a threshold

αcrit at the source must be exceeded in order to form the

closed-field configuration of a spheromak (e.g. Yee & Bellan

2000). This property is not surprising since analytic solu-

tions of Eq. (2) show that B transitions from sinh-like to

sine functions above a critical α (Bellan 2000).

Well-known models of astrophysical jets have consid-

ered separately the roles played by poloidal (Blandford &

Payne 1982) and toroidal fields (Contopoulos 1995) in jet

formation. However, the present work shows that jet struc-
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Why Are Magnetic Towers Attractive?

Advantages of the Magnetic Tower Model:

• Dense stellar envelope provides the most nat-
ural environment for magnetic tower collima-
tion.

• Magnetic field produced by disk dynamo nat-
urally has closed geometry: flux loops emerge
from the disk and come back to the disk.

• Closed field lines inhibit contamination from
the surrounding stellar material; magnetic tower
just pushes the gas aside
⇒ low baryon loading!



Magnetic Tower Inside a Star:

Basic Model

magnetic
tower

star

black hole disk

cocoon

shock

• Unperturbed stellar pressure is negligible: Vtop � cs∗.

• External pressure is replaced by inertia of stellar gas.

• Tower drives a strong hydrodynamic shock is a mag-
netic piston.

• A hot cocoon confines the tower: B2
tower = Pcocoon

• 3 input parameters: Ψ, ∆Ω, Pext ⇒ Ψ, ∆Ω, ρ0



Magnetic Tower Inside a Star:

Basic Estimates

Rs

Z top

se
p

ar
at

ri
x

V
top

x=xs
R0

region I

region II

x=1

Vtop ∼ ∆ΩR0 and Vtop ∼ VA ≡ B0√
4πρ0

⇒

R0 ∼ (
Ψ

∆Ω
)1/3 ρ

−1/6
0

Estimates:

R0 ∼ 3Rd (
Bd,15

Rd,6.5∆Ω3.5
√
ρ0,6

)1/3 ;

B0 ∼ 0.1Bd (
Rd,6.5∆Ω3.5

Bd,15

)2/3 ρ
1/3
0,6 ;

Vtop ∼ 3 · 1010 cm/sec B
1/3
d,15R

2/3
d,6.5 ∆Ω

2/3
3.5 ρ

−1/6
0,6 .



Magnetic Tower Inside a Star:

Mathematical Model

• Axisymmetric Magnetic Field:

B(R, z) = Bpol +Bφφ̂ =
1

R
[∇Ψ × φ̂] +

I

R
φ̂

• Force-free Grad–Shafranov equation:

R∂R (
1

R
ΨR) = − II ′(Ψ)

• Boundary Conditions:

ΨI(R = 0) = ΨII(R = R0) = 1

ΨI(Rs) = ΨII(Rs) = 0

• Separatrix Force-Balance Condition:

(B2
φ +B2

z)
I = (B2

φ +B2
z)
II , R = Rs .

• Poloidal Current and the Twist Angle:

∆Φ(Ψ) = ∆Ω(Ψ) t = I(Ψ)
∫

Ψ

dz

R2Bz



Magnetic Tower Inside a Star:

Mathematical Model (Cont’d)

• Tower-Cocoon Pressure Balance:

B2
φ(R0)

8π
+
B2
z(R0)

8π
= Pcocoon .

• Total Vertical Magnetic Stress on Tower Top:

Fz = 2π
R0∫

0

[
B2
φ(R)

8π
− B2

z(R)

8π
] RdR .

• Cocoon Pressure:

Pcocoon = Ptop =
Fz
πR2

0

• Strong Shock Jump Condition:

Pcocoon =
4

3
ρ0V

2
top



Magnetic Tower Inside a Star:

Analytical Example

Example: I(Ψ) = µ
√

Ψ − Ψ2

— linear ODE, eigen-value problem for µ.

Solution in terms of modified Bessel functions:

ψI(x) =
1

2
+ a1xI1(µx) + b1xK1(µx) ,

ψII(x) =
1

2
+ a2xI1(µx) + b2xK1(µx) .

where a1, b1, a2, b2 are determined by boundary conditions.

Final values of parameters:

µ ' 6.7 xs ' 0.7 Vtop ' 3VA

B z
Bφ



Transition to Relativistic Regime

and the Final Opening Angle

• Tower radius increases as the tower grows and the sur-

rounding density drops: R0 ∼ ρ
−1/6
0 .

• The expansion velocity increases as Vtop ∼ ∆ΩR0.

• At some critical height zc, density drops to a value ρc
at which Vtop = c ⇒
transition to relativistic expansion !

• For Bd = 1015 G, Rd = 3 ·106 cm, ∆Ω = 3 ·103 sec−1:
ρc ' 106 g/cm3 zc ' 108 cm.

• Relativistic Magnetic Tower → Future Research.

• Insight from relativistic hydro simulations (Zhang et al.
2003): collimation by the cocoon and recollimation
shocks.

• Opening angle: ∆θ ∼ R0/zc ∼ 0.1 ?



SUMMARY

CONCLUSION:

Magnetic Tower inside a Collapsar Provides
an Attractive Mechanism for the Formation
of a Narrow, Baryon-Poor Channel through
the Star.

TO BE DONE:

• Generalization to Relativistic Regime

• Numerical MHD Simulations

• Role of Instabilities and Magnetic Dissipation


