Development of a General Relativistic Particle-in-Cell Code

Michael Watson

Fisk University
Collaborators:
Ken Nishikawa (NSSTC)
Yosuke Mizuno (NSSTC)

Observational Data

Relativistic PIC Jet/ Disk Simulation

Plasma Accelerator
OSIRIS (Fonseca 2002)
TRISTAN
W. Buneman and K. Nishikawa

Relativistic Jet Simulation
Nishikawa et al 1996-2005
Relativistic Disk Simulation
W Lovelace 2004

GRPIC Considerations

Pros

Particle motion is self-consistent.

Dynamics of charged particle separation

The major alternative, GRMHD, is a fluid approximation. Mainly uses "frozen in" condition and ideal fluid.

Cons

Computationally intensive
Dependence on initial conditions and instability growth
Frequency scales

Accrete3D (GRPIC)

2 General relativistic extension of relativistic particle-in-cell code

Tensor form of Maxwell's equations
\approx Tensor form of Newton-Lorentz equation
Werr metric

General Relativistic Equations

Maxwell's Equations

$$
\begin{gathered}
F_{; \beta}^{\alpha \beta}=\frac{4 \pi}{c} J^{\alpha} \quad F_{\alpha \beta ; \gamma}+F_{\beta \gamma ; \alpha}+F_{\gamma \alpha ; \beta}=0 \\
\text { Equations of Motion } \\
m\left(\frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{r s}^{\alpha} \frac{d x^{r}}{d \tau} \frac{d x^{s}}{d \tau}\right)=q F_{\beta}^{\alpha} u^{\beta}
\end{gathered}
$$

Kerr Metric

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}-c^{2} d t^{2}+\frac{2 m r^{3} k^{2}}{r^{4}+a^{2} z^{2}}
$$

$$
\begin{gathered}
k\left(r^{2}+a^{2}\right) r=r^{2}(x d x+y d y)+a r(x d y-y d x)+\left(r^{2}+a^{2}\right)(z d z+r d t) \\
R^{2}=x^{2}+y^{2}+z^{2} \quad r^{4}-\left(R^{2}-a^{2}\right) r^{2}-a^{2} z^{2}=0
\end{gathered}
$$

Particle-in-cell (PIC) code flow chart

Diagnostics and processor exchanges etc.

Field solve:
Calculate E and B from J using full set of Maxwell's equations

Particle push:
Update particle positions and velocities using the relativistic equations of motion
(ionization/collisions)

Charge and current deposition:
Calculate \mathbf{J} and ρ from particle positions and velocities

Particle Push

Fifth Order Runge Kutta
Adaptive Step Size
Newton-Lorentz equation

$$
\begin{gathered}
m\left(\frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{r s}^{\alpha} \frac{d x^{r}}{d \tau} \frac{d x^{s}}{d \tau}\right)=q F_{\beta}^{\alpha} u^{\beta} \\
u^{\alpha}=\frac{d x^{\alpha}}{d \tau}=\frac{d t}{d \tau} \frac{d x^{\alpha}}{d t}=\gamma v^{\alpha}
\end{gathered}
$$

Orbit Test

Yee Lattice

Magnetic Field

Classical

$$
\frac{\partial \vec{B}}{\partial t}=-c \vec{\nabla} \times \vec{E}
$$

General Relativity

$$
F_{\alpha \beta ; 4}=-\left(F_{\beta 4 ; \alpha}+F_{4 \alpha ; \beta}\right)
$$

Magnetic Field

Classical

$$
\frac{\partial \vec{B}}{\partial t}=-c \vec{\nabla} \times \vec{E}
$$

General Relativity

$$
F_{\alpha \beta, \gamma}+F_{\beta \gamma, \alpha}+F_{\gamma \alpha, \beta}=0
$$

Magnetic Field

Classical

$$
\frac{\partial \vec{B}}{\partial t}=-c \vec{\nabla} \times \vec{E}
$$

General Relativity

$$
F_{\alpha \beta, \gamma}+F_{\beta \gamma, \alpha}+F_{\gamma \alpha, \beta}=0
$$

Code $\quad F_{\alpha \beta}^{n e w}=F_{\alpha \beta}^{o l d}-\left(\frac{\partial F_{\beta 4}}{\partial x^{\alpha}}+\frac{\partial F_{4 \alpha}}{\partial x^{\beta}}\right) d x^{4}$

Electric Field

Classical

$$
\frac{\partial \vec{E}}{\partial t}=c \vec{\nabla} \times \vec{B}-4 \pi \vec{J}
$$

General Relativity

$$
\begin{gathered}
\frac{\partial F^{\alpha 4}}{\partial x^{4}}=\frac{4 \pi}{c} J^{\alpha}-F_{, \nu}^{\alpha \nu}-\Gamma_{\gamma \beta}^{\alpha} F^{\gamma \beta}-\Gamma_{\gamma \beta}^{\beta} F^{\alpha \gamma} \\
J^{\alpha}=\rho u^{\alpha} \quad \rho=\gamma m n
\end{gathered}
$$

Jet Simulation

B_{z}	$-6 \times 10^{4} \mathrm{G}$
$M_{b h}$	$3 \mathrm{X} 10^{8}$
Courant	. 05
Disk Particles	400,000
Particle Mass	$1 M_{\odot}$
Charge	10^{-5}
$\Delta t / \tau_{s}$	$3 \cdot 34$
$\Delta x / r_{s}$	2.23

Considerations/Questions

\approx Increase grid resolution
\approx Incorporate MPI
2 How strong are the outflows and what mechanism dominates the formation?

What role does "orbital" instability play?
What is the disk's internal field structure?

Future Studies

Disk/Jet Connection
2 Magnetic field amplification and instabilities

Energy transfer/conversion

T Radiation

