Gamma Ray Bursts Connecting Observations and Simulations

Georgia Richardson University of Alabama in Huntsville National Space Science and Technology Center

Outline

Basic Observational Information Long GRBs

Classification of Simulations (fluid vs. particle)

>What Physics We Want in the Simulations

>Method Research and Test Problems

>NSSTC Relativistic Jets Group

A few 'typical' GRB light curves from BATSE

Durations: Milliseconds to Hundreds of seconds

Frequency: One - two per day on average

Wide range of structure

"If you have seen one burst, you have seen one burst" -Meegan

GRB990123 energy spectra

What can we simulate? Fluid vs. Particle

Fluid simulations (Hydro and MHD) – Large scale flow properties.

- Conservation of mass, momentum, energy and Maxwell's equations
 Accretion and jet dynamics / formation.
- •System dynamics (not the detailed physics)

Nishikawa, et al., 2005

Particle simulations (PIC) – Localized simulations of particle kinetics.

Particle equations of motion and Maxwell's equations.
Particle acceleration due to instabilities (small scale physics).

Flow Domain – Multiple Flow Regions

Fluid Instabilities

MHD Instabilities

Strong Gravitational Force

Image Credit: A. Siemiginowska (CfA) et al., CXC, NASA **Illustration by M.Weiss (CXC)**

Computational Components / GRB Relativistic Jets

Massive explosion => Core collapse (Jet Formation) General Relativity Relativistic Shocks GRB Variability and Observational Properties **Shock Interactions Large Lorentz Factors** Non-ideal – diffusion, internal heat transfer **Non-uniform fluid (Accretion – Jet Dynamics) Equation of State (Improve fluid description) Turbulence and other instabilities GRB Beaming Magnetic fields (Non-ideal?, Divergence Constraint) Rotation Radiation**

GR-MHD Equations in Conservation Form

$$\frac{\partial}{\partial t}\mathbf{U} = -\frac{\partial}{\partial x_i}\mathbf{F}_i - \frac{\partial}{\partial x_i}\mathbf{G}_i + \mathbf{S}$$

U – Conservation variables F_i – Flux terms G_i – Diffusion terms S – Source terms

$$P_{i}^{i} = \begin{bmatrix} \rho u^{i} \\ \rho h u^{i} u^{1} + P g^{11} \delta_{1}^{i} - b^{i} b^{1} \\ \rho h u^{i} u^{2} + P g^{22} \delta_{2}^{i} - b^{i} b^{2} \\ \rho h u^{i} u^{3} + P g^{33} \delta_{3}^{i} - b^{i} b^{3} \\ \rho h u^{i} + P g^{30} u^{i} - b^{i} b^{0} \\ b^{i} u^{1} - b^{1} u^{i} \\ b^{i} u^{2} - b^{2} u^{i} \\ b^{i} u^{3} - b^{3} u^{i} \end{bmatrix}$$

Flowfield Dependent Variation Method

$$U^{n+1} = U^{n} + \Delta t \frac{\partial U^{n+s_{a}}}{\partial t} + \frac{\Delta t^{2}}{2} \frac{\partial^{2} U^{n+s_{b}}}{\partial t^{2}} + O(\Delta t^{3})$$

$$\Delta U^{n+1} = U^{n+1} - U^{n}$$

$$\Delta U^{n+1} = \Delta t \left(\frac{\partial U^{n}}{\partial t} + s_{a} \frac{\partial \Delta U^{n+1}}{\partial t} \right) + \frac{\Delta t^{2}}{2} \left(\frac{\partial^{2} U^{n}}{\partial t^{2}} + s_{b} \frac{\partial \Delta U^{n+1}}{\partial t^{2}} \right) + O(\Delta t^{3})$$
First order FDV Parameter Second order FDV Parameter

$$\frac{\partial}{\partial t}\mathbf{U} = -\frac{\partial}{\partial x_i}\mathbf{F}_i - \frac{\partial}{\partial x_i}\mathbf{G}_i + \mathbf{S}$$

Chung - 1999 Richardson & Chung - 2002

First Order FDV Parameters

Calculated by sampling the flow physics (Lorentz factor, Reynolds number, etc.) Indicators for shocks, instabilities (turbulence, etc.), adaptive mesh.

Diffusion parameter indicates non-ideal terms, shift in PDE form from hyperbolic to mixed.

 $s_{a} = \begin{cases} s_{1} = 1^{st} \text{ order flux parameter} & \Gamma = \frac{1}{\sqrt{1 - g_{ij}u^{i}u^{j}}} \\ s_{3} = 1^{st} \text{ order diffusion parameter} & \operatorname{Re} = \frac{u^{i}L\rho}{\mu} \\ s_{5} = 1^{st} \text{ order source term parameter} \end{cases}$

Second Order FDV Parameters

Numerical instability indicator. Controls the second order damping term.

$$\Delta \mathbf{U}^{n+1} = \Delta t \left(\frac{\partial \mathbf{U}^{n}}{\partial t} + \mathbf{s}_{a} \frac{\partial \Delta \mathbf{U}^{n+1}}{\partial t} \right) + \frac{\Delta t^{2}}{2} \left(\frac{\partial^{2} \mathbf{U}^{n}}{\partial t^{2}} + \mathbf{s}_{b} \frac{\partial \Delta \mathbf{U}^{n+1}}{\partial t^{2}} \right) + \mathbf{O} \left(\Delta t^{3} \right)$$

$$s_{b} = \begin{cases} s_{2} = 2^{nd} \text{ order convection parameter} \\ s_{4} = 2^{nd} \text{ order diffusion parameter} \\ s_{6} = 2^{nd} \text{ order source term parameter} \end{cases} s_{b} = \frac{1}{2} \left(1 + s_{a}^{\eta}\right)$$

With specific constant FDV parameters, the equations reduce to known solution methods.

Hydrodynamics

Relativistic shocks

Large Lorentz factors General relativity Non-ideal – diffusion, heat transfer Non-uniform fluid Shock Interactions Equation of State – improve fluid description Turbulence and other instabilities

Relativistic Shock Tube (400 nodes)

Richardson & Chung - 2002

Relativistic Shock Tube – FDV Parameters (400 nodes)

Relativistic Shock Tube – Rough Adaptive Mesh

Hydrodynamics Relativistic shocks Large Lorentz factors General relativity Non-ideal – diffusion, heat transfer Non-uniform fluid Shock Interactions Equation of State – improve fluid description Turbulence and other instabilities

Ultra-Relativistic Wall Shock (200 nodes)

General Relativisitc Black Hole Infall (32 nodes)

Hydrodynamics Relativistic shocks Large Lorentz factors General relativity Non-ideal – diffusion, heat transfer Non-uniform fluid Shock Interactions Equation of State – improve fluid description Turbulence and other instabilities

Other FDV Sample Problems

Non-Relativistic Shock Tube

Incompressible Viscous Flow (2-D)

Other FDV Sample Problems

Non-Relativistic Shock Tube

compressible Viscous Flov (2-D)

Heard, PhD - 2006

NSSTC Relativistic Jets Group

Nishikawa

Watson

BATSE (1991 – 2000)

