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Abstract
We announce the discovery of a new kind of high-order resonant Kelvin-Helmholtz modes acting on relativistic sheared flows which have the largest linear growth rates and

crucially dominate the global stability properties of the flow in the non-linear regime. These modes were overlooked by previous studies that focused on non-relativistic relative flow
speeds, infinitely thin transition layers, or very-low-order perturbation modes. The new modes grow up very fast in the linear regime, form small-scale shock fronts and then dissipate
forming a relativistically hot sheath surrounding the jet core. The modification of the background flow by these modes leads to the stabilization of other disruptive modes of Kelvin-
Helmholtz instability. Numerical simulations show that high Lorentz-factor jets developing these modes are exceptionally stable in the non-linear regime. The potential connection of
the development of these stabilizing modes in relativistic jets with the FRI/FRII morphological dichotomy of extragalactic radio sources is suggested.

1 Introduction
Jets observed in a wide range of electromagnetic spectrum rep-
resent variety of morphological properties. One of the long-
standing questions is related to the physical origin of the FRI
and FRII dichotomy found by Fanaroff and Riley [1].

The Kelvin-Helmholtz (KH) instability (in the simplest case,
that of a tangential discontinuity of velocity at the interface of
parallel flows) is one of the classical instabilities of fluid dynam-
ics [2]. We investigate the KH instability in relativistic sheared
jets and address the question of the role of shear layer for the
long-term evolution of relativistic extragalactic jets [3].

2 Method
We consider a 2D relativistic slab jet, described by relativistic
equations of hydrodynamics, in Cartesian coordinates flowing
along the z-coordinate and surrounded by a denser and colder
ambient medium. An ideal gas equation of state with adia-
batic exponent Γ = 4/3 is applied for both the jet and ambient
medium.

Both media are in pressure equilibrium and are separated by a
smooth shear layer of the form: a(x) = a∞+(a0−a∞)/ cosh(xm),
where a(x) represents the jet velocity vz and the rest mass den-
sity ρ and a0 and a∞ are their values at the jet symmetry plane
(at x = 0) and at x → ∞. The integer m controls the shear layer
steepness. In the limit m → ∞ the configuration tends to the
vortex-sheet (discontinuous velocity profile) case.

We perform the linear stability analysis by imposing pertur-
bations ∝ F (x) exp(i(kzz − ωt)) on top of the unperturbed flow,
where ω and kz (kx) are the frequency and wavenumber compo-
nents along (across) the jet flow. The linearized set of relativistic
equations can be reduced to a single second order ordinary dif-
ferential equation for the pressure perturbation, P1 [4]
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where cs is the relativistic sound speed. Subscript 0 repre-
sents the equilibrium quantities and the prime denotes the
x-derivative. The solutions (oscillation frequency ωr and the
growth rate ωi vs. wavenumber k) of the equation (1) supple-
mented with an appropriate set of boundary conditions [7] are
found with the aid of the shooting method [5, 6].

In addition to the linear stability analysis we perform a series of
numerical simulations using a finite-difference code based on a
high-resolution shock-capturing scheme which solves the equa-
tions of relativistic hydrodynamics written in conservation form
[8]. The numerical simulations of sheared jets for a large set of
jet parameters allow us to follow the nonlinear evolution of the
instability modes found with the aid of linear stability analysis.

3 Results
We have solved the linear problem for about 20 models (see [7])
with different specific internal energies of the jet, Lorentz fac-
tors and shear layer widths, fixing jet/ambient rest-mass density
contrast (= 0.1). We used m = 8, 25, 2000 (shear layer width,
d ≈ 0.6, 0.18, 5 10−3Rj; Rj is the initial jet radius) and vortex
sheet for jets having specific internal energies εj = 0.4c2 (mod-
els B) and 60c2 (models D) and Lorentz factors γj = 5 (B05,
D05), 10 (B10, D10) and 20 (B20, D20).

Figure 1: Growth rate vs. longitudinal wavenumber for Model
D20, using a shear layer with m = 25 (left panel) and vortex
sheet (right panel) for the antisymmetric modes. The main dif-
ference between both cases is the overall decrease of growth
rates in the sheared case, and the appearance of sharp reso-
nances dominating over other modes.

Exemplary solutions of the linearized problem are shown in
Fig. 1, where we compare the growth rates of KH instability
modes vs. wavenumber k for the sheared jet boundary (m = 25)
and the vortex-sheet case (m = 2000) for a hot and fast jet D20
(with specific internal energy density ∼ 60c2 and Lorentz factor
γ = 20). The growth rate curves corresponding to a single mode
consists on a broad maximum at larger wavenumbers and a lo-
cal peak which is placed in the small wavenumber limit, near
the marginal stability point of the mode (see Fig. 2. While in the
vortex-sheet, relativistic case the small wavenumber peaks are
relatively unimportant, in the presence of the shear layer they
significantly dominate over other modes for large wavenumbers.
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Figure 2: The structure of four modes extracted from the left
panel of Fig.1. Growth rates (lower curves) together with oscil-
lation frequencies (upper curves) are shown. Small wavenum-
ber peaks of high order modes show larger growth rates and
are referred to as shear layer resonances.

The shear layer resonances correspond to very distinct spa-
tial structures of eigenmodes, as it is seen in Fig. 3 for Model
D20. In the shear layer case (central panel), the most unstable
resonant modes have a small transversal wavelength which is
comparable to the width of the shear layer. In the right panel of
Fig. 3 we display an analogous pressure map resulting from a
numerical hydrodynamical simulation.

Figure 3: Pressure maps of eigenmode structures for Model
D20. Left panel: the dominating mode for the vortex-sheet
case. Central panel: the dominant mode for m = 25 shear layer.
Right panel: Pressure perturbation map from the corresponding
m = 25 hydrodynamical simulation.

The nonlinear evolution of the shear layer resonances, studied
with the aid of numerical simulations, reveals that these modes
are highly dissipative - due to the wave steepening they form
shocks within the thin layer adjacent to the jet boundary. These
shocks heat up the jet boundary, what is apparent in plots of the
specific internal energy, which is shown along with other quanti-
ties in Fig. 4 (dashed line). The width of the hot boundary layer
coincides very well with the penetration depth of the waves ex-
cited at the jet boundary.

Figure 4: Averaged transversal structure in the final state of the
jets corresponding to model D10. Solid line - tracer; dotted line
- rest mass density; dashed line - specific internal energy. Spe-
cific internal energy has been divided by 100 to fit in the scale.
The double peak in the profile of specific internal energy results
from the sound wave dissipation.

Figure 5: Schlieren plots in the non-linear regime for models
B20 (left panels) and B05 (right panels). Shear layer reso-
nances shield the jet in model B20 against disruption.

4 Conclusion
The importance of the shear-layer resonant modes relies not
only on their dominance among solutions of the linearized prob-
lem.

We find that those jets for which the resonant modes start to
dominate early in the simulation, do not disrupt and are very
stable during the nonlinear evolution. An example of this be-
haviour is shown in Fig. 5, left column of jet maps obtained for
the model B20, at three different time instants. We show also
another case B05, for which the shear layer resonant modes
do not develop. Jets of this type undergo strong sideway oscil-
lations which lead to strong oblique shocks and a subsequent
sudden jet disruption.

We find therefore that the shear layer resonant modes
shield jets against disruption. The shear-layer resonant
modes, characterized by short radial wavelengths, sup-
press the growth of the disruptive long-wavelength insta-
bility modes.

Finally, we note that the steadiness of jets developing the
shear layer resonant modes makes them firm candidates
to remain collimated through long distances. Hence our re-
sults would point to high Lorentz factor (γ ≥ 10), highly su-
personic jets as forming FRII Class, whereas FRI jets would
be found in the opposite limit of slow and small Mach num-
ber jets.
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