0 υ . ____ U SU H 0 • — ۵) Δ S 0 ÷ Ļ ... ר S Ŀ Δ_ LL. U ۵. 0 (7

Physical problems (microphysics) in relativistic plasma flows

Luís O. Silva

GoLP/Centro de Física dos Plasmas Instituto Superior Técnico, Lisbon, Portugal

http://cfp.ist.utl.pt/golp/

Mass Density

Collaborations

Massimiliano Fiore, Ricardo A. Fonseca, Michael Marti, Gianfranco Sorasio

Chuang Ren (now at U. Rochester), John Tonge, Michail Tzoufras, Warren B. Mori

Mikhail Medvedev

- Particle acceleration $(f(\Upsilon))$
- Summary

Plasma instabilities in GRBs

- In the fireball model of GRBs, relativistic plasma shells collide/overtake each other (Re'em Sari, yesterday; e.g. Piran, 05 and references therein)

- Synchroton radiation indicates the presence of sub-equipartition magnetic fields: $\epsilon_{B-field}/\epsilon_{particles} \sim 10^{-3}$

- Weibel instability can be the mechanism responsible for B-field generation in this scenario (Medvedev and Loeb, 99)

Collision between internal shells - internal shocks -

Ś

Central engine with rapid variability

Conditions for plasma instabilities: Relativistic shocks ? Particle acceleration ?

Collision between ejecta and ISM - external shock -

Ejecta of relativistic plasma shells

Numerical simulations

Superior Técnico

u t o

nstit

Ŀ

G o L P / C F P

Particle-in-cell simulations

Solving Maxwell's equations on a grid with self-consistent charges and currents due to charged particle dynamics ______

State-of-the-art

~ 10^9 particles ~ $(500)^3$ cells

RAM ~ 0.5 TByte Run time: hours to months Data/run ~ I TByte

One-to-one simulations of plasma based accelerators & cluster dynamics Weibel/two stream instability in fast igniton, astrophysics

Particle-in-cell (PIC) - (Dawson, Buneman, 1960's) Maxwell's equation solved on simulation grid Particles pushed with Lorentz force

osiris 2.0

osiris.framework

- Massivelly parallel particle-in-cell code
- Visualization and data analysis infrastructure
- Developed by the osiris.consortium \Rightarrow UCLA + IST + USC

New in version 2.0

- · Bessel beams
- Binary collisions module
- Impact and tunnel ionization (ADK model)
- Dynamic load balancing
- · Parallel I/O

Collisionless plasma instabilities

erior Técnico

nstit

Ŀ

G o L P / C F P

Collisionless instabilities of plasma streams

General theory: Watson, Bludman, Rosenbluth (1960)

Two-stream instability (longitudinal mode):

n_b, v_b - number density/velocity of plasma stream

 n_0 - number density of background (stationary) plasma

Weibel/filamentation instability for e^{-}/e^{+} (transverse mode):

$$\sim (n_b/n_0)^{1/2}$$

 $\Gamma \sim (n_{\rm b}/n_0)^{1/3}$

 $k_{\parallel} \sim \omega_{pe0}/v_b$

$$k_{\perp} \sim \omega_{pe0}/c \ (T \neq 0)$$

Multidimensional electromagnetic beam-plasma instability will be a combination of transverse and longitudinal modes Relevant time and spatial scales $L \approx c/\omega_{p0} \approx 5 \text{ km}/\sqrt{n_0[\text{cm}^-3]}$ $T \approx 1/\omega_{p0} \approx 20 \,\mu\text{s}/\sqrt{n_0[\text{cm}^-3]}$

Three dimensional PIC simulations I

Periodic system Current and charge neutral Moving ions

- 3D runs (128)³ cells (12.8 c/ ω_{p0})³ $\omega_{p0}t_{max}$ = 500 16 particles/(species×cell)
- 2D runs (|| and \perp)

 (512×128) cells $(51.2 \times 12.8) (c/\omega_{p0})^2$ $\omega_{p0}t_{max} = 500$ 16 particles/(species×cell)

Three dimensional PIC simulations II

Beam density @ t = 62.4/ ω_{pe0} = 7.5 Γ_{weibel}

Green = 40%; Red = 27.5%

Fastest growing mode $k_1 \sim 1 \ k_{\perp} \sim 3$ $\theta_{tilt} \sim 18.4^{\circ}$

Covariant fluid theory I

$$\frac{\partial T_i^{\alpha\beta}}{\partial x^{\beta}} = m_i \overline{n}_i F^{\alpha} \quad \text{Covariant fluid equations} \qquad F^{\alpha} = \text{Lorentz 4 - force}$$

 $T^{\alpha\beta} = p\eta^{\alpha\beta} + (p+\varepsilon)U^{\alpha}U^{\beta}$

Energy-momentum stress tensor

3D representation

$$\left(\partial_t + \mathbf{v} \cdot \nabla\right) \mathbf{v} = \frac{qnc^2}{\gamma^2(p+\varepsilon)} \left[\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right] - \frac{qn}{\gamma^2(p+\varepsilon)} \left(\mathbf{v} \cdot \mathbf{E} \right) \mathbf{v} - \frac{c^2}{\gamma^2(p+\varepsilon)} \left[\nabla p + \frac{\mathbf{v}}{c^2} \partial_t p \right]$$

+ Maxwell's equations

Key issue: relativistic equation of state p(T,n) and $\epsilon(T,n)$

Covariant fluid theory II

$$U^{\alpha} = \int u^{\alpha} \frac{f(u)}{(1 + \mathbf{u} \cdot \mathbf{u})^{1/2}} d\mathbf{u}$$
$$T^{\alpha\beta} = mc^{2} \int u^{\alpha} u^{\beta} \frac{f(u)}{(1 + \mathbf{u} \cdot \mathbf{u})^{1/2}} d\mathbf{u}$$

Fluid proper velocity

Energy-momentum stress tensor

In the rest frame of the fluid: $T^{11} = p$ $T^{00} = \varepsilon$

For a waterbag f(u) :

$$\frac{p}{n_0 m c^2} = \frac{1}{8u_0^3} \left\{ u_0 \tilde{n} \left(1 + u_0^2 \tilde{n}^2 \right)^{1/2} \left(2u_0^2 \tilde{n}^2 - 3 \right) + 3 \operatorname{arcsinh}(u_0 \tilde{n}) \right\} \qquad \tilde{n} = \left(\overline{n} / n_0 \right)^{1/3}$$
$$\varepsilon = n_0 m c^2 \left\{ \tilde{n} + \frac{1}{2} u_0^2 \tilde{n}^{5/3} \right\} - p$$

Tilted filamentation of relativistic electron streams I*

Comparison theory-simulations I

Electron beam spatial structure

FFT

Comparison theory-simulations II

Weibel instability*

erior Técnico		
stituto Sup	PIC Simulations	
F P		
G o L P / C		

L. O. Silva | Ann Arbor, MI, 16 December 2005 | Relativistic Jets

What have we learned so far from PIC simulations?

- Kazimura et al (1998); Gruzinov (2001); Silva et al (2003); Nishikawa et al (2003); Frederiksen et al (2004); Hededal and Nordlund (2005); Milosavljevic et al (2005)
 - \equiv Weibel seems to work (sub-equipartition B-fields) (e-e+ & very light ions)
 - = Nonlinear dynamics of filaments leads to B-field evolution on a very slow time scale (much slower than I/ω_{p0})
 - \equiv Reconnection in nonlinear stage of instability leads to heating/ acceleration
 - \equiv Radial space-charge fields associated with filaments play a role in particle acceleration/heating
 - \equiv Recent works are already analyzing synchrotron spectra measured in the simulations

Numerical set-up

3D results - mass density

3D results - B-field generation

Field energy evolution - 3D Simulations

Particle energy evolution - 3D Simulations

Field structure and particle energy distribution

Long time evolution of field structure*

What are the open questions/problems?

- Long time evolution of B-field for more realistic geometries
- Configuration of simulations not appropriate to check particle acceleration and relativistic shock formation:
 - \equiv either periodic systems or systems where plasma injected from side wall
- Collision of electron-"proton" shells
 - \equiv typical length scale and time scale increase by $(m_i/m_e)^{1/2}$
 - \equiv grand challenge for 3D simulations

Increase simulation box size and interaction time by reducing dimensionality of the simulations and using moving window

Simulation parameters (PARSEC)*

Periodic system Current and charge neutral Moving ions

- 3D runs $(128)^3$ cells $(12.8 c/\omega_{p0})^3$ $\omega_{p0}t_{max}=120$ 16 particles/cell
- 2D runs (|| and \perp) (128)² cells (12.8 c/ ω_{p0})² $\omega_{p0}t_{max}$ =120 16 particles/cell

*J. Tonge, UCLA PhD Thesis, 2002

Kinetic energy flux per particle

Can lower dimensional simulations capture the [relevant] physics?

B-field evolution on large scales/long times

Weibel instability on electrons - B field

Weibel instability on electrons

Time = 282.60 [1 / ω_{p}]

Time = 565.20 [1 / $\omega_{\rm p}$]

Weibel instability - ion density

Weibel instability on ions - B field

B-field evolution on the head of relativistic shell I

B-field on the head of relativistic shell - Weibel on e-

B-field on the head of relativistic shell - Weibel on i

Particle acceleration in plasma collisions

uperior Técnico

S

nstituto

y

G o L P / C F P

3D PIC simulations of e-e+ shell collisions with moving window

Time history for fields ($\gamma_{\text{shell}} = 10$)

Shock formation ($\gamma_{cloud} = 10$) - shell particles

Shock formation ($\gamma_{shell} = 10$) - background plasma

Particle acceleration ($\gamma_{shell} = 10$) - background plasma

2D PIC e⁻ i shells and particle acceleration ($\gamma_{shell} = 10$)

(Relativistic) Buneman responsible for accelerating structure

Strong acceleration by parallel E field in leading edge of shell

Summary

- Particle-in-cell simulations as a tool to probe the microphysics of relativistic flows
- 3D simulations are very expensive but lower dimensional simulations can capture some of the physics
- Very large 2D simulations seem to confirm sub-equipartition B-field generation for very long times with ions ($\varepsilon_B \sim 10^{-3}$, up to 2000/ ω_{p0}) in progress largest 2D simulations (4 x size)
- Dynamics of leading edge of relativistic shell
 - \equiv strong erosion of e- in shell
 - = formation of hot return current with plasma e-
 - \equiv onset of Buneman instability leads to e- acceleration up to $\sim \Upsilon_{shell}{}^2$