Influence of black hole magnetic torques on accretion disk

Ioana Duțan \& Peter L. Biermann

Max-Planck-Institut fïr Radioastronomie, Bonn, Germany

Why this talk?

...we like to play around a black hole
...many AGN show relativistic jets
...what is the mechanism of powering them?
...are they enough?
...also for low accretion rate and very spinning BHs
...jets power - observational alatal
...at the end: a TOOL for estimating the BH spin parameter...

This tallk:

1. Interoaluction
2. Jets alriven by accretion cynal BH rotation:
2.1. Basic assumptions
2.2. Power of driving jets
2.3. Efficiency of driving jets
3. Conclusions

- How much energy can *. the JETS get froiss accretion and black hole rotation??*

Kerr Black Holes: M-mass; J-spin

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

cylindrical coord: t, r, ϕ, z

$$
r_{g}=\frac{G M}{c^{2}}, \quad a=\frac{J}{M c}
$$

spin parameter: $a_{*}=\frac{a}{r_{g}}$

$$
r_{H}=r_{g}\left[1+\left(1-a_{*}^{2}\right)^{1 / 2}\right], \quad r_{s l}=2 r_{g}
$$

ergosphere
ergosphere
outer horizon (r_{1})
static limit $\left(\mathbf{r}_{41}\right)$
inner horizon (r)

$$
-1 \leqslant a_{*} \leqslant 1
$$

2. Jets driven by accretion and BH rotation

2.1. Basic assumptions:

- Kerr black hole $M \sim 10^{9} M_{\text {Sun }}+$ thin accretion disk $r_{\text {inner }}=r_{m s}$
- innermost region of the disks: sicutic limuit $2 \mu \rightarrow \Gamma_{m s}=$ the footring of the jet
- rotational energy and angular wowentum are extracted from the black hole through magnetic field lines that connect the disk to the BH (magnetic coupling)
- instead of radiating the energy released from the innermost region of the disk, that energy is used to power the jets
- $q_{m}=\frac{\dot{M}_{\text {iets }}}{M_{D}} \cong 0.05$, Falcke and Biermann

$$
\dot{M}_{D}=\dot{m} \dot{M}_{E d d}, \quad \dot{M}_{E d d}=1.38 \times 10^{18}\left(M / M_{S u n}\right)
$$

2.2. Power of driving jets $P_{\text {jets }}$:

- angular-momentum conservation law:

$$
\begin{aligned}
& \frac{d}{d r}\left[\left(1-q_{m}\right) \dot{M}_{D} c^{2} L^{+}\right]=4 \pi r\left(J \underline{L}^{*}-H\right) \\
& \text { accretion } \uparrow \quad j e t s \uparrow \bar{B} H \uparrow \\
& \boldsymbol{F}_{H D}=2 \int_{r_{n s}}^{r_{l}} 2 \pi r H d r \\
& \uparrow \text { magnetic torque }
\end{aligned}
$$

- energy conservation law:

$$
\begin{aligned}
& \left.\frac{d}{d r}\left[\left(1-q_{m}\right) M_{D} c^{2} E^{+}\right]=4 \pi r\left(J E^{+}-H \Omega_{D}\right)_{:}\right] \quad E^{+}=\frac{E}{\mu}=\frac{r^{3 / 2}-2 r_{s} r^{1 / 2}+r_{r}^{1 / 2} a}{r^{3 / 4}\left(r^{r / 4}-3 r_{g} r^{3 / 2}+2 r_{g}^{u / 2} a\right)^{\mu / 2}} \\
& P_{j e t s}=2 \int_{r_{n s t}}^{r_{t l}} 2 \pi J E^{+} r d r=\left(1-q_{m}\right) \dot{M}_{D} c^{2}\left[E^{+}\left(r_{s l}\right)-E^{+}\left(r_{m s}\right)\right]+4 \pi \int_{r_{r s s}}^{r_{s l}} r H \Omega_{D} d r
\end{aligned}
$$

- flux of angular momentum transferred by poloidal magnetic field:

$$
\begin{aligned}
& \text { * . . } H=\frac{1}{8 \pi^{5} r}\left(\frac{d \Psi_{0}}{c d r}\right)^{2} \frac{\Omega_{H}-\Omega_{n}}{\left(-d R_{H} / d r\right)} \text {. Li, L.-X., } 2000 \\
& d R_{H}=R_{H} \frac{d l}{2 \pi r_{H}}, R_{H}^{*}=\frac{4 \pi}{c}=377 \text { ohm : Macdonald \& Thorne, } 1982 \\
& B_{H} 2 \pi r_{H} d l=-B_{D}^{p} \sqrt{g_{(r \Phi)}} 2 \pi r d r \\
& B_{H}=\zeta B_{H}^{p}\left(r_{m s}\right) \text { where } \zeta \geq 1!! \\
& B_{D}^{p} \propto r^{-n}, n=1.25 \text { !! Blandford, } 1976 \\
& B_{H}=a_{*}^{-l}\binom{\eta \dot{M}_{\sigma^{2} / H} c^{2}}{4 \pi G^{2} M^{2}}^{1 / 2} \quad \text { Znajek, } 1978
\end{aligned}
$$

$$
\begin{aligned}
& P_{j e t s}=\left(1-q_{m}\right) \dot{m} \dot{M}_{E d d} c^{2}\left(E^{+}\left(r_{s l_{*}}\right)-E^{+}\left(r_{m s *}\right)\right)+ \\
& \left.+\frac{r_{m \mathrm{~s}}^{n}\left(1+\sqrt{1-a_{*}^{2}}\right)}{4 \pi \zeta} \int_{r_{m s *}}^{r_{s l *}} r_{*}^{3-n} \frac{1+r_{*}^{-2} a_{*}^{-2}+2 r_{*}^{-3} a_{*}^{2}}{1-2 r_{*}^{-1}+r_{*}^{-2} a_{*}^{2}} \cdot \frac{a_{*}}{2\left(1+1-a_{*}^{2}\right)}-\frac{1}{r_{*}^{3 / 2}+a_{*}}\right] \cdot \frac{1}{r_{*}^{3 / 2}+a_{*}} d r_{*} \\
& P_{j e t s}=P_{j e t s}^{a c c}+P_{j e t s}^{r o t}
\end{aligned}
$$

Fixing the parameter ζ :

$$
\zeta=1
$$

...power of driving jets vs. BH spin parameter

2.3. Efficiency of driving jets:

$$
\eta=\frac{P_{i c s}}{m M_{D} c^{2}+P_{j e c s}^{v a t}}
$$

$\dot{m}\left[M_{E d d}\right]$	$P_{\text {jets }}\left[\times 10^{1 / \mathrm{erg}} / \mathrm{s}\right]$	$P_{j i t s}^{r a t} / P_{j \in t e}$	$\beta=\nu_{j e t} / \mathrm{c}$
1	254.2010	0.1008	0.9692
0.1	48.4951	0.5286	$0.991{ }^{6}$
0.01	28.5521	0,9384	0,9997
0.001	27.0538	0.9911	0.9999
0.0001	26.9124	0,9904	X

3. Conclusions:

Strongest points:

Weakest points:

- $\eta \sim 1$...the additional energy comes from the BH rotation energy by magnetic torques on the disk
- also for relativistic jets of some lowluminosity AGN...
time dependence of poloidal magnetic field...
- ...the jets` power depends stronger on BH spin power thath-on-aceretion power
- possible low limit for accretion rate:
$m \sim 0.0 \theta 1$
...at the end: a TOOL for estimating the BH spin parameter...
- Thorne, K.
- Blandford, R. D.
- Znajek, R. L.
- Li, L.-X.
- Falcke, H.
- Biermann, P. L.

