Evolution of Jets in a Clumpy Environment

Geoff Bicknell¹ Vicky Safouris^{1,2} Ralph Sutherland¹ Lakshmi Saripalli² Ravi Subrahmanyan²

I. Research School of Astronomy & Astrophysics, Australian National University

2. Australia Telescope National Facility

Supersonic jet in inhomogeneous medium

An emerging radio galaxy in X-rays

Background & motivation

- GPS and CSS sources clear evidence for interaction with environment
- High redshift radio galaxies jet-cloud interactions e.g. 4C41.17
- Numerous radio galaxies bear the imprint of jet/clumpy medium interactions (M87, Cen A, MKN 421, MKN 501,)

Further motivation

 Many examples of FR2 interactions leading to emission lines (Morganti, Tadhunter etc.)

- Indicator of the environment in which young radio galaxies are formed e.g mergers
- Interaction between AGN and forming galaxies probably the basis for the Magorrian relation
- The baryon mass fraction in galaxies: probably a result of outflows – starbursts in dwarf galaxies -AGN in massive galaxies

2D comparisons

M 87 Large filling factor "Flood and channel"

3C 48 Small filling factor Buoyant plume

Technical features

- 3D; ppmlr hydro; thermal cooling
- Constant hot gas density replaced by atmosphere in potential well
- Self-consistent potential corresponding to light and dark matter
- Log-normal distribution of clouds with a power-law distribution in Fourier space (cf clouds in Earth's atmosphere)
- X-ray emission calculated using MAPPINGS code

Double isothermal potential (cf Saglia et al.)

$$f_{
m dark}(E) \propto \exp(-E/\sigma_d^2)$$

 $f_{
m lum}(E) \propto \exp(-E/\sigma_1^2)$
 $E = rac{1}{2}v^2 + \phi$
 $abla^2 \phi = 4\pi G
ho$

PARAMETERS

Dark matter & luminous matter velocity dispersions
 Dark matter and luminous matter core radii
 => Dark matter and luminous densities

Cygnus A I-band and X-ray profiles

Data: Westergard & Barthel; Carilli

Smith & Wilson

Observed and $r_{\text{lum}} = 500 \text{ pc}$ $r_{\text{dark}} = 15 \text{ kpc}$ inferred $\beta = \frac{T_{\text{vir}}}{T} = \frac{\mu m_p \sigma_{\text{dark}}^2}{kT_{\infty}} \approx 0.9$ $T_{\infty} \approx 9 \times 10^7 \text{ K}$ parameters $\sigma_{\text{lum}} \approx 620 \text{ km s}^{-1}$ $\sigma_{\text{dark}} \approx 1000 \text{ km s}^{-1}$

Densities: $\rho_{\text{lum}} \approx 260 \, M_{\odot} \, \mathrm{pc}^{-3}$

 $ho_{\mathrm{dark}} \approx 0.74 \, M_{\odot} \, \mathrm{pc}^{-3}$

Generic luminous + dark matter potential

(Ad hoc) Initial conditions

Likely origin of gas a minor or major merger

Single point statistic of density: log-normal distribution

Two point statistics described by $ho({f k}) \propto k^{-5/3}$

Mean density

Spherical distribution

$$\bar{\rho}(\mathbf{r}) = \bar{\rho}_0 \times \exp(-r/h)$$

Initial configuration

M = 10 $\eta = 2 \times 10^{-3}$ $\beta = 0.77$

 $L_{\rm jet} = 1.4 \times 10^{46} \, {\rm ergs \, s^{-1}}$

Jet - diameter = 1.2 kpc

Evolution of density

Radio emission

Initial disk-like density distributions

Modified Keplerian

$$\begin{split} \tilde{v}_{\phi} &= e \, v_{\text{Kepler}}(r) \\ \frac{\bar{\rho}(r,z)}{\bar{\rho}(0,0)} &= \exp\left[\frac{\phi(r,z) - e^2\phi(r,0) - (1-e^2)\phi(0,0)}{\sigma_g^2}\right] \\ \sigma_g^2 &= \frac{kT}{\mu m_p} + \sigma_t^2 \end{split}$$

Simulation with disk of warm gas

Cygnus A

Synthetic radio image

Evolution of thermal emission

Chandra X-ray image of Cygnus A

Evolutionary sequence

Large scale accretion disk

NGC 7502: Velocity dispersion ~ 70 km s⁻¹ Van der Marel and Van den Bosch 98

Density distribution in kpc-scale accretion disk

$$\begin{split} \tilde{v}_{\phi} &= v_{\text{Kepler}}(r) \\ \bar{\rho}(r,z) &= \bar{\rho}(r) \exp\left(-\frac{z^2}{h^2}\right) \\ \bar{\rho}(r) &= \frac{\dot{M}_a/\alpha}{(2\pi)^{3/2}} \frac{1}{\sigma_g^3} \frac{GM}{r^3} \\ h^2 &= \frac{2\sigma_g^2 r^3}{GM(r)} \qquad \sigma_g^2 = \frac{kT}{\mu m_p} + \sigma_t^2 \\ \alpha &= \frac{\langle \rho v'_r v'_{\phi} \rangle}{\langle \rho v'^2 \rangle} \end{split}$$

Evolution of mid-plane density

Synthetic radio movie

Radiative shocks

Early

25

Simulation of a hypersonic restarting jet

$$M = 30$$
$$\eta = 10^{-2}$$

mpc1.0000.dens

Jet within pre-existing cocoon

$$egin{array}{rcl} M&=&30\ \eta&=&1 \end{array}$$

Use simulation to determine ratio of cocoon to jet diameters

 $4pAc\beta \left[\Gamma^2 + (\Gamma - 1)\Gamma\chi\right] \times \text{Age} \times \text{Adiabatic Factor}$ $\simeq \text{Energy deposited within new cocoon}$ $\Rightarrow \Gamma \approx 20$

Summary

- Wide variety of morphologies possible when relativistic jets interact with cloudy medium
- Various structures can be identified which are similar to evolutionary phases in FR2 evolution – signature of initial interaction with disk
- Spherical distribution of clumpy gas builds up halo of old particles
- Disk-like distribution shows persistent X-ray emission from shocked disk
- Shocked emission due to direct jet-cloud encounters and interaction with cocoon
- High Lorentz factors possible on scales of 100 kpc in Mpc scale radio galaxies