THE JAMES WEBB SPACE TELESCOPE

Philip Hughes Department of Astronomy University of Michigan <u>phughes@umich.edu</u> www-personal.umich.edu/~phughes/

Plan

> Day 1:

- Introduction motivation
- Modern astronomical telescopes
- JWST history, design and deployment
- > Day 2:
 - Star & planet formation the background
 - JWST new results
- > Day 3:
 - Galaxy formation & cosmology the background
 - JWST new results

Ten Seconds After The Big Bang

- The Universe was a hot (billion K) soup of matter and radiation, with small random variations in density
- Components:
 - Baryons (protons & neutrons n & p)
 - Electrons (e)
 - Neutrinos (v)
 - ٨
 - ▶ Photons (γ) 10⁹ for every particle
 - Dark matter particles

Before Stars & Galaxies

- By 20 min. after the Big Bang H had undergone fusion to form some light elements: the Universe was a soup of matter and radiation, with small random variations in density
- Components:
 - Hydrogen (¹H), Helium (⁴He) and trace amounts of their isotopes (eg, deuterium) and Lithium (⁷Li)
 - Electrons (e)
 - ▹ Neutrinos (v)
 - > Photons (γ) 10⁹ for every particle
 - ▹ Dark matter

Formation of Structure

How do we go from to this?

Quantum Fluctuations

- Space is a sea of virtual particles popping into and out of existence
- Pairs can appear for a short time determined by the Heisenberg Uncertainty Principle
- Random fluctuations are inevitable in the quantum world

Inflation

Quantum Fluctuations + Inflation

- The Universe was a sea of quantum fluctuations at the start of inflation
- Inflation stretches these no "sloshing" because inflation is so fast the fluctuations are effectively frozen into the flow
- Each successive generation
 of fluctuations is inflated less
- After inflation, the Universe
 expands, encompassing a
 hierarchy of structure

Growth Of Structure

- The dark matter fluctuations started growing soon after the Big Bang – by the time baryonic matter follows they are at the 1 in 1000 level
- Baryon fluctuations can't grow until after radiation can stream through matter (380,000 years after Big Bang) and then begin to "fall" into dark matter halos
- We would not have the structure we have today without dark matter
- Gravity alone explains the large-scale structure of sheets & filaments!

Evolution To The Present Day

A Star Is Born

- ➤ Simulations suggest that stars with masses 300 1000 M_☉ formed in the densest parts of protogalaxies some millions of years after the Big Bang
- They needed to be massive for gravity to overcome pressure – there would have been few options for cooling, as the heavy elements do not exist yet

Bright Stars

- These stars are massive, so hot; but also....
- In stars today C, N, and O catalyze fusion reactions
- > These early stars had none of these elements
- Energy production was less efficient they needed to be more compact and hotter
- ▹ These first stars had T_{surface} ~ 100,000 K

Cosmic Renaissance

- These stars shone ultraviolet hot
- Even if only 1 part in 100,000 of all the baryons formed early stars, the UV from these would have re-ionized the whole Universe: bubbles of ionized gas growing and merging to fill space
- But did they? Did the 1st stars or the 1st galaxies make the Universe transparent?

Galaxy & SMBH Growth I

There is currently no true consensus

- Pure accretion? This is really problematic:
 - Inflow is limited by outflow of radiation arising from energy released by inflow
 - If the radiation pushes with an efficiency of 10%, and we start with a 100 solar mass object, it will take <u>at least</u> 0.5 billion years to make a billion solar mass SMBH
 - But such SMBHs must have been in place when the Universe was only 0.8 billion years old, because we see luminous active galaxies back then
 - Accretion at levels way above that expected???

SMBH = Supermassive Black Hole

Fragmentation

- > Which sounds more plausible?
 - A. Denser gas radiates more energy, gets colder, and thus has less pressure, so gets even denser, radiates more, etc...
 - B. Less dense gas radiates more energy, gets colder and thus has less pressure, so gets even less dense, radiates less, etc...
 - C. Gas density can't influence how much energy a gas radiates; end of story

Galaxy & SMBH Growth II

- Monolithic collapse of 10,000-million solar mass gas cloud to a SMBH – followed by accretion? This is also a bit problematic:
 - Efficient cooling of gas tends to lead to <u>fragmentation</u> of gas clouds – multiple small objects, as with star clusters today
 - But early in Universe, cooling would have been inefficient
 - no heavy elements due to prior generations of stars
 - > not even H_2 destroyed by UV from 1st stars, etc.
 - Might have prevented fragmentation, allowing single, big objects to form, but the argument is not water-tight

Interactions

- Stars are tiny compared with the distance between them
- So, can stars in a cluster interact with each other?
 - A. No, if the stars are in a cluster their gravitational pulls have cancelled out
 - > B. Yes, through their gravitational attractions
 - > C. No, they all orbit the cluster center
 - D. Yes, clusters are old, so there will always be chance interactions

Interactions contd.

- > A single star just "sits there"
- > Two stars can only orbit their center of mass
- Three or more stars can interact gravitationally, with one or more ejected (the cluster of stars is "evaporating"), leaving the others more tightly bound (stars in the cluster are "merging")
- Evaporation or Merging? Only the details on a case by case basis tells us which process wins

• •

•

• .

. .

• .

Galaxy & SMBH Growth III

- Merger of dense star cluster maybe with 100,000 solar masses of stars/remnants within a region a few light years in diameter? Possible, but there are great uncertainties, and it might not lead to very massive BHs
- Cluster could collapse in a few million years good
- But maybe produce a BH of only a few 1000-10,000 solar masses – not enough

Galaxy & SMBH Growth IV

- Mergers followed by accretion, with the remnants of the 1st massive stars as seeds?
- This looks more promising
- In the same way that we think the `cosmic web' arises in a bottom up scenario – small stuff first, building to bigger structures – it's suggested that protogalaxies with one or a few BHs from the 1st stars merge hierarchically
- Once a sufficiently massive BH exists, accretion can `finish the job'

UHZ1 – Black Hole

UHZ1 – Supermassive Black Hole

- Two is better than one! Black hole lies behind Abell
 2744 which lenses it: magnified by x4 (see last week)
- JWST + Chandra (X-ray observations)
- Most distant black hole seen in X-rays, 470 million years after Big Bang
- Black hole and host galaxy have similar mass: 10-100 million solar masses (BH mass from intensity of X-rays, galaxy stellar mass from luminosity)
- Suggests monolithic collapse of gas cloud as origin

CEERS 1019 – Active SMBH

CEERS Mosaic of 100,000 galaxies **CEERS 1019**

CEERS 1019 – Active SMBH

- <u>Most distant</u> (from 570 million years after the Big Bang), <u>least massive</u> active SMBH
- Cosmic Evolution Early Release Science Survey using NIRCam, MIRI, NIRSpec
- Mass is 9 million solar masses (cf. Sgr A*, M87, etc.)
- Spectra are the key: so many well measured lines that the accretion rate and galaxy star formation rate can be determined
- Accretion important? Continues to challenge
 SMBH+galaxy growth models

ACTIVE SUPERMASSIVE BLACK HOLES ACROSS COSMIC TIME

El Gordo Cluster

El Gordo Cluster

- Most massive cluster known as far back as when the Universe was about 6 billion years old
- Magnifies many more distant objects
- A. La Flaca The Thin One
- > B. *El Anzuelo* The Fish Hook
 - Red because of dust & cosmological redshift (light has taken 10.6 billion years to reach us)
 - Correction for distortion reveals a disk about ¼ size of Milky Way
 - > Quenching of star formation evident near galaxy's center

Direct probe of the star forming history of a galaxy

James Webb & Cosmic Web

James Webb & Cosmic Web

- NIRCam image of a thread-like arrangement of 10 galaxies (white circles; quasar in central galaxy of triple)
- > 3 million light year long structure
- > 830 million years after Big Bang
- Can be expected to have evolved into a rich cluster
- Strong support for picture of a cosmic web that forms by gravitational collapse, galaxies forming along sheets and filaments by about 1 billion years after Big Bang

Footnote: Evolution Continues!

- JWST, Keck & VLT observations: Emission-line galaxies and Intergalactic Gas in the Epoch of Reionization
- Galaxies are surrounded by transparent regions 2 million light years in radius
- Probed using a distant quasar as a backlight

- JWST, Keck & VLT observations: Emission-line galaxies and Intergalactic Gas in the Epoch of Reionization
- Was it the 1st stars or 1st galaxies that reionized the Universe? Starlight from the 1st galaxies!

Stars form and galaxies assemble Galaxies begin to change the gas around them

Areas of transformed gas expand

Clear universe, end of reionization

Pandora's Cluster

Pandora's Cluster

- NIRCam image of 3 massive clusters merging to form a megacluster
- Creates unusually powerful gravitational lens
- Note: over 50,000 sources in this field
- > Had been observed by HST, but only the core of the cluster had been studied
- JWST provides unprecedented breadth and depth, and is thus a powerful tool for cosmological studies

A Cosmic Knot

SDSS J165202.64+172852.3 MOTIONS OF GAS AROUND AN EXTREMELY RED QUASAR

A Cosmic Knot

- NIRSpec + HST observations of a quasar (active galactic nucleus)
- Seen about 2 billion years after Big Bang
- Seems to be a dense knot of galaxy formation as 3 (or more) protogalaxies swirl around the quasar, maybe merging to form a final massive galaxy
- Observed speeds of almost 1000 km/s are challenging to explain, as they require masses implying an incredible density of material

Background: Galaxy Interactions

The Cartwheel Galaxy

The Cartwheel Galaxy

The Cartwheel Galaxy

- Jst image: MIRI image of Cartwheel galaxy, and 2 small companions, at a distance of 500 million light years
- > 2nd image: NIRCam & MIRI combined, helps reveal detail
- Inner ring has large amounts of hot dust, with gigantic young star clusters embedded
- Outer ring, which has expanded for over 400 million years, is dominated by star formation and supernovae
- JWST explores a period of galactic evolution with amazing detail on structure, dynamics, stellar populations and dust/gas composition

The James Webb Space Telescope

- We have just scratched to surface of JWST work
- Check out:
 - Your favorite (trusted) news sources
 - Astronomy Magazine (<u>www.astronomy.com</u>)
 - Sky & Telescope
 (skyandtelescope.org)
 - Space.com
 (www.space.com)
- > Thanks for coming!

