# THE JAMES WEBB SPACE TELESCOPE

Philip Hughes Department of Astronomy University of Michigan <u>phughes@umich.edu</u> www-personal.umich.edu/~phughes/

#### Plan

#### > Day 1:

- Introduction motivation
- Modern astronomical telescopes
- JWST history, design and deployment
- > Day 2:
  - Star & planet formation the background
  - JWST new results
- Day 3:
  - Galaxy formation & cosmology the background
  - > JWST new results

#### Star-Forming Clouds



 The matter between the stars is called the interstellar medium.

 Stars form in dark clouds of dusty, molecular gas in interstellar space, because there it's cold and dense.

#### Composition of Clouds



- We were able to determine the composition of interstellar gas from its absorption lines in the spectra of stars, long before modern molecular emission line observations became common.
- > 70% H, 28% He, 2% heavier elements: the "stuff" of the Universe.

#### Molecular Clouds



a Visible-light image of the nebula. The dark (horsehead-shaped) region is a molecular cloud.

**b** Radio-wave image of the nebula showing emission from carbon monoxide (CO) molecules.

- Most of the matter in star-forming clouds is in the form of molecules (H<sub>2</sub>, CO, etc.).
- These molecular clouds have a temperature of 10– 30 K, protected from starlight by dust.

## Interstellar Dust



Interplanetary dust – possibly pre-solar nebula

- Particles are < 1
   <p>micrometer in size and
   made of elements like
   C, O, Si, and Fe.
- Interstellar dust is very effective at scattering visible light, and blocks our view of stars within and beyond clouds.

#### Interstellar Reddening



 Stars viewed through the edges of the cloud look redder because dust blocks (shorterwavelength) blue light more effectively than (longer-wavelength) red light.

**a** A visible-light image of the dark molecular cloud Barnard 68.

#### Interstellar Reddening



- Long-wavelength

   infrared light passes
   through a cloud
   more easily than
   visible light.
- > Observations of infrared light reveal stars on the other side of the cloud.

**b** An infrared image of Barnard 68 showing the stars that lie behind the clouc

#### **Observing Newborn Stars**



 Visible light from a newborn star is often trapped within the dark, dusty gas clouds where the star formed.

#### **Observing Newborn Stars**



 Observing the infrared light from a cloud can reveal the newborn star embedded inside it.

#### Glowing Dust Grains



 Dust grains that absorb visible light heat up and emit infrared light of even longer wavelength.

#### Gravity versus Pressure

- Gravity can create stars only if it can overcome the force of gas pressure in a cloud.
- A typical molecular cloud (T~30 K, n~300 particles/cm<sup>3</sup>; air has almost 10<sup>20</sup> molecules/cm<sup>3</sup>) must contain at least a few hundred solar masses for gravity to overcome pressure.

#### Fragmentation of a Cloud

- Gravity within a contracting gas cloud becomes stronger as the gas becomes denser.
- Gravity can therefore overcome pressure in smaller pieces of the cloud, causing it to break apart into multiple fragments, each of which may go on to form a star.
- $_{\scriptscriptstyle \succ}$  pressure force  $\infty$  density

#### Fragmentation of a Cloud: Star Cluster

Cloud containing 50
 solar masses of gas.





# Trapping of Energy

- During contraction half the liberated potential energy goes into heat, half is radiated away.
- As contraction packs the molecules and dust particles of a cloud fragment closer together, it becomes harder for infrared and radio photons (from molecular emission lines) to escape.
- Contraction <u>slows down</u>, and the center of the cloud fragment becomes a **protostar**.

# Trapping of Energy

- Gravity always wins, and contraction continues, but at a rate set by the time scale for energy to radiate away.
- Note balloon analogy.

#### Growth of a Protostar



Bow shock in outflow from young star LL Orionis.

Matter from the cloud continues to fall onto the protostar until either the protostar or a neighboring star blows the surrounding gas away.

#### Collapse contd.

- The original nebula had some spin: conservation of angular momentum causes the cloud to spin up as it contracts.
- Centripetal force *holds up* the cloud in the 'spin plane', but *not along the axis;* collisions
  - allow collapse to disk;
  - order motions in the disk.







Rotation axis



#### Disk channels released energy

Jets are observed coming from the centers of disks around protostars.





The jets ram into interstellar gas, heating it and causing it to glow.

#### Inside-out collapse of cloud core

- Inner cloud is denser, so free-fall time is less
- > This is the **protostellar** phase
- Conservation of angular momentum produces
  - > protostar
  - > disk
  - infalling envelope (optically thick)

#### T Tauri phase

- Shrouding envelope disperses forming star/disk becomes visible
- > < 10 million years old</pre>
- core too cool for fusion gravitational potential energy – intermediate between protostar/regular star





#### Timescales

- The frequency of observed phases tells us the relative time spent in each
- Disks seem to have largely dispersed by 8-10 million years, setting constraints on the time for (and thus mechanism for) giant planet formation

#### Gas & Grains In Disk



## Major Issues: Growth Of Planets

- > By x  $10^{13}$  in scale!
- > Electrostatic sticking
- Collisional melding tricky:
  - > shatter wins over sticking
  - > meter size barrier
  - > do big things even stick?
  - > maybe vortices pull stuff together
- > Gravitational accretion

#### Disk Vortices To The Rescue?



#### Major Issues: Gaps

- > Planets open gaps
- One planet can open multiple gaps interior and exterior to orbit



#### Earendel







#### Earendel

- NIRCam image reveals "Sunrise arc", a gravitationally lensed image of a galaxy
- Contains a B star (twice as hot as Sun, million times more luminous) from within 1 billion years of Big Bang [brightened by x4000 due to lensing]: most distant star ever detected
- Originally found by HST, but JWST data suggests a companion red star, consistent with massive stars often being binary
- Patches of light on either side of Earendel are two images of one star cluster 10 million years old; we are probing the earliest stars to form in the Universe



#### NGC 346

- MIRI image of cool gas and dust in a star forming region in SMC
- Blue\* is emission from silicates and PAHs; red\* is warmer dust heated by stars
- Filaments are regions with a high density of protostars (over 1000 identified)
- Widely thought the SMC is less evolved than Milky Way – fewer heavy elements – less dust – this will cause a rethink!
- Will help us understand "cosmic noon" when there was less dust around, but star formation peaked

#### Cosmic Cliffs



#### Cosmic Cliffs

- NIRCam observation of "Cosmic Cliffs", a large gaseous cavity within star cluster NGC 3324 (NW of the Carina nebula, at about 9,000 ly)
- Reveals several dozen jets and outflows from stars in formation within the "cliffs", interpreted using detailed exploration with multiple filters
- Gives new insight into just how active star forming regions are, and the demographics of young star systems



**MIRI Mid-Infrared** 

NIRCam Near Infrared

**MIRI and NIRCam** 

## Orion Disk

- NIRCam & MIRI observations of a protoplanetary disk in the Orion star forming region, 1350 ly away
- > Detect the methyl cation ( $CH_3^+$ ) molecule
- > Initiates the growth of carbon-based molecules
- Major impact on our understanding of interstellar chemistry (in particular in the presence of UV radiation from hot stars) and the origins of life
- Study by Felipe Alarcón and Ted Bergin

(UM Astronomy)





Atom is quantized!



- (a) Atom absorbs a 656.3-nm
   photon; absorbed energy causes
   electron to jump from the n = 2 orbit
   up to the n = 3 orbit
- (b) Electron falls from the n = 3 orbit to the n = 2 orbit; energy lost by atom goes into emitting a 656.3-nm photon





#### PDS 70

#### PDS 70 INNER DISK EMISSION SPECTRUM

MIRI | IFU Medium-Resolution Spectroscopy



## PDS 70

- MIRI observations of a young star with gapped disk with two giant planets, 370 ly away
- Detects water vapor in inner disk, where terrestrial type planets might be forming
- Motivates new lines of thought: did the water form in place, or get carried in on ice-coated particles; does dust help it survive UV radiation from star?
- Maybe terrestrial planets have access to water from their formation

# HH 211

#### HH 211

- » NIRCam image of Herbig-Haro 211
- Reveals bow shocks with unprecedented detail from an infant star; <10% solar mass, 10,000s years old</p>
- Note knotty, wiggling supersonic core flow (cf. water jet); binary star?
- Innermost flow is ~100 km/s; not enough energy to break apart molecules, so we now know these are molecular flows
- Such observations are better-defining composition and dynamics of these bipolar flows







#### Europa

- > Image from NIRCam, composition from NIRSpec
- Crystalline or amorphous CO<sub>2</sub> in chaos terrain
- From subsurface ocean, not delivered by meteorites! (Most abundant in disrupted chaos terrain area where an exchange between ocean and surface is likely)
- Recent! (CO<sub>2</sub> not stable on surface)
- » Bolsters the argument for life in Europa's ocean

#### K2-18 b

# ATMOSPHERE COMPOSITION

NIRISS and NIRSpec (G395H)



**MEBB** SPACE TELESCOPE

#### K2-18 b

- » NIRSpec study of atmosphere of exoplanet K2-18 b
- Planet is about 8 M<sub>earth</sub>, about 120 ly from Earth, and in habitable zone of its star
- Complements studies suggesting Hydrogen rich atmosphere above water ocean surface
- Tentative identification of dimethyl sulfide found on Earth only due to life: mostly phytoplankton
- Large planet mass suggests ocean might be too hot for life – but DMS is intriguing and shows how much exoplanet atmosphere studies have advanced

1.5 sigma result – shameless self-promotion



#### Cas A

 MIRI image of supernova remnant Cas A, 1100 ly away; image is about 10 ly across

(Massive stars end their life as a supernova + neutron star, black hole, or "nothing")

- Youngest known remnant in Milky Way: 340 years ago from Earth's perspective
- Unprecedented resolution and wavelength coverage

#### Cas A

- Different colors depict emission from different elements:
- Exterior orange/red is emission from warm dust where stellar stuff is ramming into circumstellar medium
- Interior clumps and knots (pink & white) is stellar material with oxygen, argon, neon, etc. made in the explosion
- Allows "stellar autopsy" to find out about original star, how it exploded, and origin of elements/dust

# Next Week....

# More science: galaxy formation & cosmology