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ABSTRACT 

Several manufacturers are adopting six sigma programs 
in efforts to reduce stamping variation. This requires the 
crucial step of establishing dimensional relationships for 
the stamping dimensional outputs that become key 
process inputs to the assembly process. This paper 
describes a methodology used to determine the root 
cause of dimensional changes in a front door assembly. 
Among the key findings in this study are the importance 
of understanding the effects of the datum-locating 
scheme and the significant influence of assembly 
processing variables, rather than stamping variability, on 
the final door assembly dimensional quality.  

INTRODUCTION 

Automotive manufacturers must develop new products 
in shorter periods of time and with ever increasing 
quality standards. Typically, quality goals are set for 
different stages of the vehicle development process. 
One of the main challenges is to meet or exceed these 
goals while maintaining the program scheduling 
constraints. Finding ways to reduce the time and cost 
spent in decision making and problem solving 
represents a major area of concern. One of the critical 
tasks during new vehicle development is the 
manufacturing validation of stamping and metal 
assembly parts within the automotive body or body-in-
white. Since the automotive body provides the 
foundation for the vehicle, its dimensional integrity and 
functionality are critical to meeting the dimensional 
quality objectives for the overall vehicle. The sheet 
metal assembly process consists of a wide array of 
stamping components and lower level subassemblies 
that vary in rigidity and complexity. The lack of rigidity 
and process complexity results in dimensional 
relationships between components, subassemblies, and 

final bodies that are difficult to model. Engineers also 
face challenges identifying root causes of dimensional 
changes during the initial manufacturing process 
validation because volumes are low and individual 
components are dynamically changing as customer 
concerns are addressed. 

One advantage of the early stages of an automotive 
model launch is that the low volumes and additional 
resources available give manufacturers the capability to 
better track parts through the production process without 
schedule disruptions. This approach also enables 
manufacturers to carry out dimensional studies to better 
understand the relationships and geometric changes 
between stamped components and their sheet metal 
assemblies. An effective technique to examine these 
dimensional relationships is to conduct a slow build 
study.  

A slow build study involves tracking the dimensional 
changes that occur in a subassembly from stamping 
through each critical assembly operation (typically, the 
geometry set stations). Thus, stamped panels are first 
measured after stamping. These same panels are then 
re measured after each assembly operation with an 
assembly line. This approach differs from normal 
measurement where sheet metal assemblies are 
measured only at the end of the assembly line. The 
problem with this approach from a diagnostic standpoint 
is that manufacturers often are unable to quantify the 
effect of individual operations and often unnecessarily 
attribute assembly process variability to the stamped 
components. 

One complication with using slow build assessments is 
that a large number of possibly correlated checkpoints 
are measured while the number of parts produced is 
relatively small. Typically, manufacturers produce 
subassemblies in groups or blocks of 5-20 vehicles 



during a launch. In addition, the location of part 
dimensions between stamped components and their 
assemblies also may differ, thus complicating the 
analysis. The methodology proposed later in this case 
study allows the estimation of regression models under 
these circumstances and provides a powerful tool for 
finding critical characteristics of components on their 
subassemblies and assemblies. 

Several researchers have studied the sheet metal 
assembly process but few have concentrated on the 
validation of the process prior to production launch.  
Hammett (1995) showed that poor datum coordination 
or inconsistent set ups can cause assembly variation. 
Similarly, he found that the average mean bias for 
assembly dimensions is double the average of the 
stamping mean deviations. These findings conflict with 
the validation strategy of several manufacturers who 
focus more of their efforts on measuring and analyzing 
stamping dimensions than on resolving assembly 
concerns during manufacturing validation.  

To better diagnose complex manufacturing variation 
relationships, several researchers have proposed 
methodologies. Takezawa (1980) used linear regression 
analysis to demonstrate that the assembly of sheet 
metal did not follow the rigid body additive theorem of 
variance. He showed that a rejected component could 
be assembled to an acceptable assembly, and also that 
an accepted component could be assembled into a 
rejected assembly. Lawless et al. (1999) discussed 
methods for studying variation in characteristics of 
products that have a multistage manufacturing process. 
The authors used simple regression, autoregressive 
models, and analysis of variance to identify stages with 
the largest contribution to the variation in the final 
product. Similarly, Hu and Wu (1992) developed a 
methodology based on principal component analysis 
(PCA) to identify variation patterns in an assembly 
process. Ceglarek and Shi (1996) studied the modeling 
and diagnosis of multi station sheet metal assembly with 
single faults. Later, Apley and Shi (1998) extended the 
study to develop a model for multiple fixture faults in 
multi stage panel assembly processes. Their model is 
based on least squares estimation and on part and 
fixture geometric information. 

Multivariate methodologies for the study of complex 
problems, such as partial least squares and multiple 
response ridge regression, have gained some popularity 
in several industries such as chemical products. 
Breiman and Friedman (1997) examined different 
methodologies for predicting multivariate responses. 
Their results showed that for multiple response 
situations, the prediction accuracy improved by 
combining and analyzing the data in a multivariate 
manner versus the conventional approach of treating 
each response individually. This paper applies the 
partial least regression models to establish variation 
relationships during the analysis off a slow build study. 

FRONT DOOR ASSEMBLY 

DESCRIPTION 

A front door assembly was studied using the slow build 
approach. Figure 1 illustrates this assembly. Its main 
components include the front door inner panel, two 
impact bars, and the front door outer panel.  

Figure 1. Front Door Assembly 

 
The study was conducted using a portable coordinate 
measuring machine and an assembly fixture capable of 
locating the inner door panel, in-process subassemblies 
and the complete assembly. The corresponding locating 
scheme is illustrated on Figure 2.  

Figure 2. Locating Scheme Assembly Fixture 

 

 

The purpose of this study is to improve the quality of the 
door assembly by reducing its level of variability and 
bringing its mean dimensions closer to their nominal 

 



engineering specifications. Table 1 shows the initial 
variability levels for the door dimensions and their 
respective capability levels during the initial validation 
phase using Pp and Ppk capability indices (Bothe, 
1997). Pp is a measure of variation relative to 
engineering specifications, excluding the deviation of 
the mean from nominal; Ppk relates to producing parts 
within specification. In the automotive industry, Pp and 
Ppk capability indices greater than 1.67 are desired. 

Table 1. Initial Capability – Front Door Assembly 

 

The values in Table 1 show that the assembly had 37% 
of the checkpoints with a Pp less than 1.67, while the 
percent of off-centered checkpoints (i.e., fail Ppk) was 
significantly larger at 78%. The mean bias (absolute 
value of the mean deviation from target) was 
approximately 0.7 mm. Figure 3 presents the location of 
the checking points used in Table 1.  

Figure 3. Door Assembly Checkpoints 

 

The validation engineers for this manufacturing process 
were interested in whether these deviations resulted 
from deviations observed in the inner door panel. The 
dimensional quality values for front door inner panel 
stamped components are shown in Table 2. 

 

 

 
 
 

 

Table 2. Initial Capability – Front Door Inner Panel 

 

At first glance, it appears the capability levels of the 
inner panel roughly match those of the assembly. 
Nonetheless, the inner panel has 31 checkpoints that do 
not necessarily match the same location as those of the 
27 checkpoints in the final assembly. More importantly, 
the front door inner panel and the final front door 
assembly are measured using different locating 
schemes and in different checking fixtures. In stamping, 
the door inner panel is rotated down from car position 
whereas the final door assembly is measured in car 
position. Figure 4 shows the location of the checkpoints 
measured in the stamped inner panel. 

 

Figure 4. Front Door Inner Panel Checkpoints 

 

We conducted a slow build study by tracking 15 different 
door inner panels throughout the various operations in 
the assembly process. The study was done in the 
assembly area using a portable measuring machine. 
Prior to performing the measurements, different 
alignment methods were investigated for the portable 
measuring machines; the results are attached in the 
appendix. Figure 5 illustrates the stages at which panels 
and subassemblies were measured. 

 

# Checkpoints % Pp<1.67 % Ppk<1.67
Avg 
Bias 
(mm)

27 37% 78% 0.68

# Checkpoints % Pp<1.67 % Ppk<1.67
Avg 
Bias 
(mm)

31 39% 65% 0.41



 

 

Figure 5. Slow Build Stages 

 

DATA ANALYSIS 

Partial least squares regression (PLSR) was used to 
analyze the data collected during the study. This 
methodology has previously been used in chemical 
engineering analysis and is robust to situations were the 
number of observations is small compared to the 
number of parameters in the model (Geladi and 
Kowalski, 1986; Kourti and MacGregor, 1996). The 
purpose of the methodology is to explain multiple 
response variables using a small number of 
combinations of the predictor variables (latent variables) 
that minimize the prediction error. Figure 6 illustrates 

the PLSR algorithm. 

Figure 6. PLSR algorithm 

 

 

RESULTS 

The results of the data analysis indicate that while the 
front door inner panel has some influence in the first 
subassembly, explaining nearly 88% of the subassembly 
variation at this stage, its overall effect decreased as the 
assembly process went on. In the last assembly stage, 
the front door inner panel could only explain 25% of the 
final door assembly dimensions. These results are 
illustrated on Figure 7. 

 

Figure 7. Door Inner Panel Influence 

 

Contrary to the conventional expectation that 
assemblies are a direct result of the summation of their 
components, these results show that most of the 
dimensional changes are due to other sources. In this 
example, most of the final assembly variation may be 
attributed to changes in the locating schemes between 
assembly stations and the final hemming operation.  

Figure 8 shows the most critical checkpoints in the inner 
panel from the slow build study. Again, these 
checkpoints have a significant influence in the geometry 
of the first subassembly, but ultimately have minimal 
influence on the final assembly. 
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Figure 8. Significant Checkpoints – Inner Panel 

 

After discovering the true impact of the inner stamping 
panels, this manufacturer shifted their variation 
reduction efforts to improving the robustness of the door 
assembly process. Some of the more important changes 
carried out were the adjustment of the hemming dies 
and the elimination of locating scheme differences 
between the first two assembly stations. Table 3 
presents the capability levels of both the door assembly 
and the inner panels after the changes in the assembly 
process were conducted. 

Table 3. Capability – Front Door Assembly 

 

These results show a significant improvement in the 
overall variability of the door assembly. Before the slow 
build analysis, the percentage of checkpoints failing 
their Pp objective (i.e., Pp lower than 1.67) was 37%. 
After the changes, the percentage decreased to 7%. 
Similarly, the percentage of points failing Ppk decreased 
from 78% to 56%.  

 

Interestingly, Table 4 presents the capability measures 
of the door inner panels after attempting to re-work 
some of the dimensional issues observed in the initial 
capability studies.  

Table 4. Capability – Front Door Inner Panel 

 

Compared to the initial capability of the inner panel, the 
stamped parts changed very little. The percentage of 
checkpoints meeting the Pp and Ppk criteria marginally 
improved. This result is in line with the findings of the 
slow build study, which demonstrated that the inner 
panel did not have a significant influence in the variation 
reduction efforts of the door assembly. 

CONCLUSION 

The validation of processes during the launch of a new 
vehicle is critical for the success of a program. Finding 
root causes of dimensional issues is a complex task. 
Multiple, correlated responses in a single assembly 
require the use of more complex analysis 
methodologies. 

In this paper, a slow build study methodology was 
presented. The approach was validated on a case study 
of a door assembly. Using partial least squares 
regression to identify variation contributions, this 
approach helped direct the process improvement 
towards the assembly process, while a conventional 
approach would have focused on re-working dies of the 
inner stamping panel.  
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APPENDIX 

One of the main concerns with the use of portable 
coordinated measuring machines is the measurement 
error due to the inaccuracy of the alignment method 
used in a particular situation. Portable CMMs have the 
disadvantage of needing to be continuously re aligned to 
capture the coordinate system of the part that needs to 
be checked. In most instances, the alignment of the 
portable CMM can be based on the coordinate system 
of a checking fixture. Three different alignment methods 
were examined during this case study of the front door 
assembly. The alignment methods are described as 
follows: 

1. Plane, Line, Point (3-2-1) Alignment: This method 
involves using the 3-2-1 principle by defining a 
plane, a line, and a point in a checking fixture and 
then using the nominal coordinates for the point as 
the main reference when aligning the portable CMM. 

2. Sphere Referencing: In this method, three spheres 
on the checking fixture define the main coordinate 
plane; the coordinates of the center of the spheres 
provide the nominal values to define the final 
alignment for the portable CMM. 

3. Best Surface Fit: In this method, three different 
datums in the checking fixture are digitized and, in a 
similar manner to the previous method, the nominal 
values are used to create a reference plane that is 
the main coordinate reference for the CMM. 

The previous three methods were evaluated by 
analyzing the repeatability of the measurements using 
the checking fixture for the door inner panel. Five 
measurements of selected datums were taken under the 
three different alignment methods. The fixture is 
illustrated in Figure 9 and the results of the data analysis 
are presented in Table 5. 

 

 

 

 

 
 
 

 

 

 



 

Figure 9. Checking Fixture Door Inner Panel 

 

 

 

Table 5. Repeatability of Alignment Methods in the 
Front Door Inner Panel 

 

 

 

 

 

 

 

 

The results indicate that the first method based on the 3-
2-1 principle of defining a plane, a line and a point in the 
checking fixture has the lowest measurement error 
resulting from re alignment. Based on this result, the 3-
2-1 alignment method was used in the slow build 
experiments performed in this case study.  
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