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Abstract 
To anticipate and prevent acts of terrorism, Indications 

and Warnings analysts try to connect clues gleaned from 
massive quantities of complex data. Multi-agent 
approaches to support Indications and Warnings are 
appropriate because ownership and security issues 
fragment the data. Furthermore, the massive scale of the 
data suggests the need for large numbers of agents. 

The Ant CAFÉ system uses fine-grained swarming agents 
to extract and organize textual evidence that corroborates 
hypotheses about the state of the world. Multiple swarming 
processes are required, including the clustering of 
paragraphs, identification of semantic relations in text, and 
assembly of evidence into structures that instantiate the 
hypothesis. These processes occur in semantic spaces 
defined using the WordNet ontology. 

This paper provides an overview of an Ant CAFÉ 
prototype. It describes the system’s architecture, and 
provides additional detail on the innovative algorithm for 
evidence assembly. Initial experiments using artificially 
generated data confirm that a global property that we call 
“clarity” emerges from agent decisions made in a local, 
and therefore scalable, manner. 1 

 

1 Introduction 
The terrible events of 9/11 placed urgent priority on the 

need to anticipate and prevent acts of terrorism. In 
particular, Indications and Warnings analysts try to connect 
clues gleaned from massive data to anticipate enemy 
action. By massive, we mean data measured in petabytes 
(1015), which also contains complex interconnectivity and 
heterogeneity at all levels of form and meaning. 

To handle massive data requires massive computational 
power: therefore, scalability is a key issue, and multi-agent 
approaches are prime candidates because of the inherently 
decentralized nature of their architectures. 

1.1 Problem 
The details of Indications and Warnings are hidden for 

security reasons, but the general idea is as follows. Various 
intelligence agencies receive streams of data from 
numerous sources of varying quality. For example, there 
may be evidence that A has shipped explosives to X, and 
                                                           
1 A research prototype of the Ant CAFÉ will be available 
for demonstrations at the conference. 

that B was seen taking photos of apartment building Y, 
located in X. Meanwhile, other evidence states that A and 
B both know terrorist C. Logically, one might deduce that 
there is a plan to blow up the apartment building; but it can 
be extremely difficult to generate this conclusion because 
the key evidence is buried in massive data. 

We model Indications and Warnings as an investigative 
process where analysts construct hypotheses that are 
tentative assertions about the world, then submit the 
hypotheses to systems that find and organize evidence to 
corroborate the hypotheses (with some degree of 
persuasiveness). Hypotheses may be represented as graphs 
of concepts at varying levels of abstraction. Finding 
evidence requires matching edges of the hypotheses graphs 
against document text. Organizing evidence means joining 
pieces of evidence according to the template provided by 
the hypothesis. Thus, to corroborate a hypothesis is like 
working a giant jigsaw puzzle where there are billions of 
pieces, and infinitely many alternative ways to construct 
solutions.  

Current information retrieval technology fails to support 
Indications and Warnings adequately in two fundamental 
ways. First, these tools do not piece together clues that 
might be found scattered across numerous documents. 
Second, these tools lack the semantic understanding 
required to recognize relevant pieces of information that 
may manifest in different forms, while excluding 
information that is not relevant. Research in areas such as 
Information Extraction [8] and Question Answering [9] 
attempts a higher level of semantic interpretation of text; 
our research builds on this work in ways that handle open 
inquiry and are potentially scalable to handle massive data.  

1.2 Approach 
Our system uses swarm intelligence. The swarm 

approach is promising for dealing with massive data 
because of the extremely distributed nature of the swarm 
architectures, with corresponding potential for parallel 
processing. Swarm systems are modeled on ants and other 
social insects [2, 4, 16]. Numerous, relatively simple 
agents make decisions in response to their local 
environments. Out of their coordinated action emerges 
desired behavior that is remarkably intelligent on the 
collective scale: air-conditioned termite nests 10 meters tall 
[4], networked paths for food collection that are minimal 
spanning trees [2], and so on. Stigmergy – coordination via 
changes to a shared environment [17] – is the key to 
efficient swarm behavior [7]. Agents can achieve 
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stigmergy using special markers such as pheromones: 
chemicals that propagate through the shared space and 
evaporate. Or, stigmergy can result as agents respond 
directly to changes in the shared environment effected by 
other agents (this is called sematectonic stigmergy). 

To apply swarm intelligence for hypothesis corroboration 
requires breaking new ground in the field of swarming 
multi-agent systems. Typically, stigmergy occurs in 
environments whose topology is simple and of low 
dimensionality – often, for example, mapping directly to a 
two or three-dimensional physical space. In these 
topologies, there are no “small-world” shortcuts, and it is 
straightforward to calculate the distance between any two 
points.  

Semantic spaces, have small-world, scale free structure 
[14] in which calculating distance requires either strong 
assumptions or sophisticated processing [22]. While there 
are other types of semantic spaces, such as the word co-
occurrence factors produced by Latent Semantic Indexing, 
these are high dimensional and, even more fundamentally, 
do not lend themselves to putting together puzzles where 
pieces of information are composed into larger structures 
that represent hypotheses. Objects in ontological spaces 
such as concepts and instances are often represented as 
graphs, which are naturally composed by linking edges. 

A second way in which our research breaks new ground 
is that the problem has led us to combine multiple 
swarming mechanisms in a single system, utilizing both 
digital pheromones and sematectonic stigmergy. These 
processes include clustering of text to yield an orderly 
space; identifying relations in text to yield matches; and 
assembly of matches into structures that instantiate 
hypotheses. Clustering has previously been achieved with 
swarming [2]. Relation identification is a very hard and 
currently salient research area, requiring natural language 
processing and extensive corpus annotation [13]. So far, 
our interest has been most focused on the process of 
evidence assembly. 

A third innovation regards the manner in which evidence 
assembly organizes evidence. Our goal is clarity, a 
measure that quantifies the degree of understandability of a 
set of assemblies (the system’s response to an investigation 
at some point in time). In high clarity solutions, a few 
assemblies stand out, they are coherent, and they are well 
differentiated from each other. For example, if an analyst 
hypothesizes the existence of scientists conducting gene 
regulation research to build biological weapons, we would 
like the system to construct evidence assemblies that, 
hypothetically, might describe Russian research in the 
1980’s on smallpox, Iraqi research in the 1990’s on plague, 
and so on. Note that clarity, as a global metric, must 
emerge from the local behavior of evidence assembly 
agents: these agents cannot calculate clarity explicitly 
without compromising the highly distributed nature of the 
architecture. 

This paper provides an overview of the achievements of 
the first year of the Ant CAFÉ2 project. We call the 
backend part of the Ant CAFÉ system the Ant Hill, while 
the frontend is the Analyst Modeling Environment (AME). 
Section 2 presents the initial Ant Hill architecture, 
including clustering, relation identification, and evidence 
assembly. Section 3 describes our algorithm for evidence 
assembly in more detail. Section 4 reports some early 
results using generated data. Section 5 describes our 
roadmap for future work, and Section 6 concludes. 

2 Ant Hill Architecture 
We conceive of the Ant CAFÉ architecture as an iterative 
loop where analysts ask the system to find evidence that 
supports a hypothesis, the system returns assemblies that 
organize relevant evidence, and the analyst reviews the 
evidence and in the process improves her understanding of 
the problem. The analyst-system interaction leads to a 
revised representation of the hypothesis, and the loop 
iterates repeatedly in this manner as the investigation 
advances. Figure 1 provides a high level overview: the 
pictures accompanying each Ant Hill stage illustrate the 
insect analogies to our processing, as explained below. 

 
Figure 1: Overview of the Ant CAFÉ architecture 

Hypotheses are represented as concept maps [6]. The 
concept maps are utilized in every stage of processing; they 
essentially act as templates for the construction of evidence 
assemblies. Concept maps are graphs with labeled nodes 
and edges. The nodes are nouns and the edges are verbs or 
verb-prepositions. We call the nouns and verbs concepts. 
We call two nodes and their connecting edge, together, a 
relation. We consider concept maps to be a low-
commitment form of ontology-like symbolic knowledge 
representation. They are becoming quite ubiquitous for 
                                                           

2 The CAFÉ acronym stands for Composite Adaptive 
Fitness Evaluation. 
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modeling domain knowledge, and are now widely taught in 
middle schools and elsewhere. 

The left side of Figure 1 involves modeling the analyst’s 
interests as represented in the concept maps. Issues include 
initial acquisition of concept maps, tuning weights 
associated with concepts and relations to reflect analyst 
interests by observing their behavior, and evolving concept 
maps in semi-automatic ways to capture increasing 
understanding as investigations progress. This work is 
addressed by the Analyst Modeling Environment part of 
the Ant CAFÉ being developed by our colleagues at 
Sarnoff Corporation [1], and is outside the scope of this 
paper. 

The right side of Figure 1 includes the Ant Hill 
processing stages of clustering, relation identification, and 
evidence assembly. Each of these stages employs a distinct 
swarming mechanism. They are sequential in terms of 
logical data flow, but execute concurrently. All of the 
processes use anytime algorithms: where some answer is 
available at any time, and the quality of the answer 
improves as time passes. Thus, relation identification can 
proceed without clustering (but with less efficiency), and 
evidence assembly can proceed while newly discovered 
relations enter the assembly process incrementally. 

The following subsections provide a high level 
description of each of the processing stages. 

2.1 Clustering 
The point of clustering is to increase the efficiency of 

relation identification by creating order in the space of 
textual data. Relation identification needs to match 
relations from the concept map to text. Therefore, 
clustering is with respect to a particular concept map, 
rather than once only for all uses of the corpus.  

The appropriate granularity for clustering is on the level 
of paragraphs. This decision is best understood by 
eliminating alternatives. Corroborating hypotheses requires 
connecting assertions culled from multiple documents. 
Relevant information needed from any particular document 
may constitute a very small part of that document. 
Therefore, clustering documents could well result in 
clusters that are meaningless or even counterproductive for 
a particular investigation. On the other hand, to cluster 
units of text smaller than paragraphs would require 
accurate prior resolution of co-references: including 
pronouns, and other anaphora such as referring to Osama 
Bin Laden as “the leader” and so on. Generally, paragraphs 
are the smallest well-defined unit of text whose boundaries 
are infrequently violated by co-reference. 

In the current Ant CAFÉ, we assume that each noun and 
verb in the concept map is disambiguated to a particular 
word meaning: namely, to a synset in WordNet [11]. We 
then consider a word of text as evidence for a concept if 
that word is in the synset, or in any synset that specializes 
the meaning of that synset.  

Given a WordNet synset, one can recursively fetch its 
specializations by requesting hyponyms for nouns, and 
troponyms for verbs [20]. The result is a tree of synsets, 
which we call a manifestation set or mset, because it 
identifies all of the words that we consider to be a 
manifestation of the target concept. Figure 2 illustrates an 
excerpt of a manifestation set. A full mset for a relatively 
general concept could include hundreds of terms. Note that 
synsets can have multiple parents, so manifestation sets 
should really be directed graphs rather than trees. At the 
cost of some inaccuracy, however, the current Ant CAFÉ 
for convenience represents them as trees where some 
subtrees occur in multiple places. 

{weapon, arm, weapon system}

{knife, dirk, …}{gun, rifle, …}

{poison, …}{nuclear weapon, …}
{biohazard, …}

{WMD, …}

{smallpox}{anthrax} {Sarin}  
Figure 2: Excerpt of a manifestation set for Weapon 

The input to Ant CAFÉ clustering includes any 
paragraph that has evidence (a word in the manifestation 
set) of any of the nodes (nouns) in the concept map. We 
exclude the verbs for this purpose because concept map 
relations often have very generic verbs that would cause 
inclusion of too many paragraphs. 

The clustering algorithm is analogous to the way that ants 
sort eggs, food, debris, and so on in their nest. Ants doing 
sorting pick up objects in a stochastic manner, where the 
probability of picking up an object increases to the degree 
that it is different from objects around it. The ants then 
move about randomly, with some probability of dropping 
the object at any point. The probability of dropping the 
object increases to the degree that it is similar to objects 
around the ant’s current location. This is a form of 
sematectonic stigmergy. 

In the Ant CAFÉ, Paragraph Agents act as ants. 
Paragraphs are initially assigned randomly to a cluster 
node, which are logical locations. There are an arbitrary 
number of cluster nodes, but this number should be 
roughly comparable to the number of relations in the 
concept map. Paragraph Agents estimate their similarity to 
other paragraphs in their current location by calculating 
pairwise similarity to a sample of those paragraphs. 
Pairwise similarity is currently defined as the number of 
concepts for which both paragraphs either have evidence, 
or both lack evidence. The paragraphs also estimate their 
similarity to the current populations of a sample of 
neighboring cluster nodes. Paragraph Agents then 
stochastically decide whether to request movement to one 
of these neighboring nodes. More detail is available in [3]. 
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System parameters control the size of the samples for the 
number of documents to compare to estimate similarity to a 
node’s population, and for the number of neighboring 
nodes to test. As these sampling rates decrease, one would 
expect the speed of convergence to slow. Preliminary 
experiments using 500 paragraphs located across ten 
cluster nodes do show the anticipated affects, but overall 
the algorithm seems to be robust.  

2.2 Relation Identification 
Relation identification is the process of finding text that 

asserts the desired relation. When such text is found, the 
concepts of the target relation are associated with the 
words in the text that are members of the corresponding 
manifestation sets. For example, the concept map might 
contain relations such as: 

 TERRORIST HAVE WEAPON 
 WEAPON CONTAIN AGENT 
 AGENT CAUSE DISEASE. 
Consider a hypothetical sentence fragment such as “… is 

a carrier that can be used to incubate organisms including 
botulism, …”. The Ant CAFÉ will consider the words in 
Arial font in this fragment to be evidence of the relation 
AGENT CAUSE DISEASE, because carrier is a kind of 
AGENT, incubate is a kind of CAUSE, and botulism is a 
kind of DISEASE. We call the association of carrier-
incubate-botulism to AGENT-CAUSE-DISEASE a match. 

Table 1 shows the correspondence between terms used in 
the Ant CAFÉ to talk about concepts maps, and the 
corresponding terms for the objects created when relations 
are matched to text.  

Table 1: Correspondence of elements when relation 
identification creates matches 

Template Instantiated Instantiated Content 
Concept Binding A word or phrase in the 

text 
Relation Match Three bindings 
Concept map Evidence 

assembly 
Matches joined according 
to the concept map 

 
To do relationship identification well is, of course, a very 

difficult problem that is the focus of considerable research 
today [12, 15, 18, 19]. The basic problems are the 
complexity of natural language (including co-reference and 
so on), and the multi-layered semantics of communication 
artifacts. For example, a document that lists patients in a 
hospital provides clear evidence that each of those patients 
was in the hospital at some time, but the document does 
not include text that explicitly matches any sentence-level 
pattern. 

Fortunately, research on relation identification does seem 
to be moving along well, and for the Ant CAFÉ we are 
content for now to use very simple and imprecise methods 
for identifying relations. Currently, if a paragraph contains 

evidence for each concept in a relation, then we use that 
paragraph to create a match, or potentially several. This 
method offers excellent recall but very poor precision. 
Potentially, a series of increasingly sophisticated natural 
language filters can be applied to increase the precision of 
relation identification to a point that is maximally cost 
beneficial. 

The relation identification process in the Ant CAFÉ is 
loosely analogous to the manner in which ants scour a 
neighborhood looking for food using pheromone-based 
stigmergy. Forager Agents swarm over the space defined 
by the cluster nodes looking for matches for particular 
relations. When they find matches, they lay digital 
pheromones to attract other Forager Agents searching for 
the same relation to the same cluster node. These 
pheromones propagate and evaporate; creating a gradient 
that guides Forager Agents and substantially increases the 
efficiency of their search. The degree to which Forager 
Agents follow the pheromone gradient is subject to an 
exploration/exploitation tradeoff. If foragers adhere 
slavishly to the gradient, then matches in previously barren 
locations may never be found.  

2.3 Evidence Assembly 
In the evidence assembly process, matches produced by 

relation identification self-organize into structures that 
instantiate the concept map. This process may be likened to 
a soup of molecules that join together to form larger 
molecules. In the insect domain, it corresponds to nest 
building: Match Agent behavior is influenced by the 
presence of assemblies under construction, and this is 
analogous to insects such as wasps whose behavior 
changes depending on the state of partially constructed 
nests. 

Matches face two types of join decisions. They can join 
another match that instantiates the same concept map 
relation. In this case, each match has a binding in a 
semantic space defined by three shared manifestation sets. 
Or, a match can join with another match that instantiates a 
concept map relation linked to its own relation. In this 
case, the join occurs in a semantic space defined by a 
single manifestation set.  

Figure 3 shows a screenshot from a demonstration of the 
Ant CAFÉ that visualizes evidence assembly for two 
linked relations. Each window holds a manifestation set 
with the root concept in the middle; the relation AGENT-
CAUSE-DISEASE covers the top half of the screen and 
SOLDIER-HAVE-DISEASE covers the bottom half. Each 
assembly has a randomly assigned color, and as matches 
join into assemblies, the colored lines representing them 
grow thicker. 
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Figure 3: Visualization of assembly in mset space 

The best solutions of evidence assembly are those that 
maximally preserve the information of the individual 
bindings when described on the level of the aggregated 
assemblies. We call this goal clarity since preserving the 
information of individual bindings yields assemblies that 
are relatively well differentiated from one another. A 
desirable solution as visualized in Figure 3, therefore, 
would have thick lines with vertices in locations within the 
mset trees that are spaced well apart. See Section 4.2 for an 
operationalization of clarity. 

Consider an example of a join decision. If a match that 
binds DISEASE to flu is joined with a binding to lobar 
pneumonia, then the best way to describe the assembly is 
using the Most Specific Subsuming (MSS) concept that 
includes both flu and lobar pneumonia. The MSS is 
identified by rising in the manifestation set until a common 
ancestor is found: in this case, respiratory disease. Figure 4 
illustrates the assembly-level description (vector-effect-
respiratory_disease) that results from joining gene delivery 
vector-induce-flu to carrier-effect-lobar_pneumonia. Thus, 
the goal of clarity means that matches should join with 
other matches such that distances between the individual 
bindings and the assembly MSS concepts are minimized. 

Vector

Flu

Lobar 
Pneumonia

Effect

Carrier

DiseaseAgent Cause

Gene
Delivery
Vector

Induce

Respiratory
Disease

MSSs

relation

match
 

Figure 4: Match aggregation 

3 Most Likely Collisions Evidence Assembly 
This section briefly describes the Most Likely Collisions 

(MLC) algorithm, which drives the behavior of matches 
during the self-organization of assemblies. MLC is a fully 
distributed algorithm, in the sense that all decisions are 
made on the local level of bindings and matches. Results 
from experiments with MLC are reported in Section 4. For 
more detail on MLC, see [5]. 

The gist of MLC is described in Figure 5, which contains 
pseudocode for the behavior of Binding Agents. 
Remember that a binding associates a concept from the 
concept map with a word in text. The current position of a 
Binding Agent is a location in the mset of the concept, 
where the home position is the synset of the text word, and 
the current position is somewhere on the path from the 
home position to the root of the mset tree. Binding agents 
move up and down this path, essentially marketing 
themselves at different levels of abstraction. Self-
expression is a function of current position and path length: 
a Binding Agent at home has perfect self-expression, while 
a binding at the root position has zero self-expression 
(unless it is also home).  

If not bound in an evidence assembly 
  Move current position in response to 
  pheromone and pull home 
  For each of n randomly selected 
  partner binding-agents residing at 
  the current node: 
    suggest a join with the 
    partner’s assembly 
Deposit pheromone proportional to 
self-expression at the current node 

Figure 5: Pseudocode for Binding Agents in MLC 
evidence assembly 

Binding Agents move stochastically in response to two 
forces: 

1) Pheromone deposited by all Binding Agents. 
Pheromone propagates and evaporates and thus create 
blended gradients that point Binding Agents toward 
areas of the mset that contain greater numbers of 
Binding Agents. 

2) A rubber band-like pull home. As Binding Agents 
move further from their home position, the force 
pulling them home increases. 

The first force encourages the agents to find assemblies 
with large numbers of matches. The second force 
encourages Binding Agents to find assemblies that are 
“close to home” – which should yield clarity.  

Join decisions are made by matches, which each contain 
three bindings. Binding Agents suggest joining the current 
assemblies of other bindings that they meet as they move 
up and down in their manifestation sets. When consensus is 
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reached among all of a match’s bindings, the match moves 
to the elected assembly. 

4 Experiments 
This section reports on some initial experiments that 

investigate whether the MLC algorithm, which uses purely 
local logic to guide the join decisions of matches, produces 
the desired emergent property of clarity, which is 
associated with the global solution consisting of a set of 
evidence assemblies.  

4.1 Methodology 
To test whether evidence assembly using the MLC 

algorithm works as intended, we generated artificial 
populations of matches that vary with respect to the quality 
of potential solutions. The more orderly the data, the more 
we expect solutions with clarity. 

The test match populations were generated for a concept 
map with four relations, three forming a triangle. These 
relations were person-carry-bottle, bottle-contain-liquid, 
person-drink-liquid, and person-live(in)-nation. These 
common everyday relations were selected to make it easy 
to interpret output showing  detailed content of assemblies. 

The least orderly type of match population, called Full 
Random, is generated with bindings selected uniformly 
randomly from synsets in each concept’s manifestation set. 
The next, somewhat more orderly type of match population 
is called Random Clumps. In these populations, the 
number of clumps of matches (n) and clump size (m) is set 
randomly with geometric distributions. In each match 
clump, a binding is selected for the three concepts in the 
match. Then, m-1 other matches are generated to be close 
to the base match, using geometrically distributed 
excursions from the base. Hidden Solution populations are 
like Random Clumps, except that matches are constrained 
to be near base matches constrained to agree where the 
relations join in the concept map. In other words, random 
clumps include groups of matches for individual relations, 
but hidden solutions include groups of matches whose 
scope includes the full concept map. “Hidden Solutions 
(3)” and “(6)” match populations include three and six such 
sets of matches, respectively. For each type of data, 30 
matches are generated for each concept map relation. 

The experiments included nine runs for each of ten 
populations generated for each type of artificial data. Each 
run executes for 100 cycles. In each cycle, each binding 
and match agent has an opportunity to act (although not all 
agents do act, to avoid building in an assumption that all 
agents act the same number of times, which would not hold 
in a true distributed system). The experiments also include 
a baseline solution, which randomly assigns matches to one 
of six assemblies, rather than using the MLC algorithm. 

The experiments were evaluated with the metrics 
summarized in Figure 6. Clarity is calculated as the 
product of the average fitness and differentiation of the 

three most-fit assemblies. The number three is chosen 
arbitrarily, but falls within the common limits of cognitive 
capacity that lead people to generally choose about three 
reasons for whatever they do [10]. The fitness of an 
assembly is the product of its self-expressiveness and its 
substantiality (size, including breadth and depth).  

Differentiation is a measure of the degree to which the 
top three assemblies differ from each other. Distances 
between pairs of assemblies are calculated with respect to 
the parts of the concept map that both assemblies cover. 
This calculation counts the numbers of nodes in the mset 
trees that are shared by the most-specific-subsumers of 
both assemblies, compared to the total number of nodes 
reaching from the root of the mset to the MSS of each 
assembly. This approach is basically a path-distance-based 
approach, which is inherently fragile [22].  

 
(1) clarity(population) = fitness(top3assemblies) 
                                        * differentiation(top3assemblies) 
(2) fitness(assembly) = self-expression(assembly) 
                                      * substantiality(assembly) 
(3) self-expression(assembly) = average self-expr(match) 
(3a) self-expr(match) = average self-expr(concept)                                          
(3b) self-expr(concept) = 1 - (distance(current, home)  
                                               / distance(root, home)) 
(4) substantiality(assembly) = magnitude(assembly) *  
                                                 breadth(assembly) 
(5) magnitude(assembly) = matches in assembly / total matches 
(6) breadth(assembly) = relations covered / total relations 
(7) differentiation(top3assemblies) = average distance- 
                                                    between(assem1, assem2) 
(7a) distance-between(assem1, assem2) = average  
                                           sharedMsetPct(shared concept) 
(7b) sharedMsetPct(concept) = mset nodes subsuming both   
                     assembly MSS / mset nodes subsuming either MSS 

Figure 6: Metric definitions 

4.2 Results 
Figure 7 shows the average clarity achieved across 90 

runs for each type of data as the runs progress. The more 
orderly the data, the greater the clarity achieved. In all 
cases, MLC achieves most improvement by twenty-five 
cycles or so. The high degree of order in Figure 7 shows 
that MLC is essentially working as intended. 

 
Figure 7: Average clarity 
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Figure 8 (a-c) show graphs for average assembly fitness 
and the sub-components of the fitness metric, self-
expression and substantiality. The x-axis shows cycles and 
the series are colored as in Figure 7. (For readers in black 
and white, the vertical position of the series is the same as 
in Figure 7 for (a) and (b), and reversed in (c)). Figure 8 (a) 
shows the same order as the results for clarity. In Figure 8 
(b), self-expression decreases as the assemblies form. This 
is to be expected since each match starts off in its own 
assembly with perfect self-expression. Note that for the 
Full Random data, self-expression approaches that of the 
baseline algorithm. In Figure 8 (c), it is interesting that the 
Full Random data ends up in the largest assemblies. The 
MSSs in these assemblies are almost always at the most 
generic level possible – the roots of the msets – and so 
there are few meaningful choices for matches and they 
mostly end up lumped together. 

   
Figure 8: 
    (a) Fitness        (b) Self-Expression   (c) Substantiality 

One aspect of Figure 8 (b) and (c) is surprising. 
Intuitively, one would expect substantiality to be greater 
for Hidden Solutions (3) rather than Hidden Solutions (6), 
since there are more matches in each pre-constructed group 
of nearby matches. On the other hand, one would expect 
self-expression for both of these data types to be essentially 
equal, since each hidden solution is constructed in the same 
manner. The results show, however, that the relative clarity 
for Hidden Solutions (3) is due to better self-expression, 
not substantiality. This is currently a bit of a mystery that 
will require further analysis to unravel. 

Finally, Figure 9 shows differentiation for each type of 
data. The four populations divide neatly depending on 
whether matches are generated in a manner where they are 
constrained to join well according to the concept map. 

 
Figure 9: Average differentiation 

5 Future Work 
Currently, individual runs using the Most Likely 

Collisions algorithm are subject to a fair amount of noise. 
We believe that it will be possible to improve the 
responsiveness of local decision making by Binding and 
Match Agents without compromising the radically 
distributed nature of the algorithm. Theoretical work has 
shown that in complex systems, global state can be 
perceived in a local manner by analyzing time series of 
local variables that are bound into global interaction [21]. 
For example, a global state of high clarity should manifest 
in evidence assembly as well-defined pheromone gradients 
that can be perceived locally by agents positioned in the 
mset trees. Perhaps, improvements in global performance 
can be achieved by tuning local behavior in response to 
perceptions of global state. For example, if global clarity is 
poor, match agents should be more willing to abandon their 
current assemblies. 

More fundamentally, we plan to extend the evidence 
assembly algorithm to incorporate more semantic 
information about matches. One problem with our current 
approach is that joining matches for linked relations 
depends entirely on the compatibility of the shared 
concept. Since the matches will often derive from different 
documents, such joins may be incorrect. To illustrate, 
consider joining an assertion about the reproduction of a 
bacterium that derives from research in drosophila, to an 
assertion about the toxicity of the same bacterium based on 
research in humans. Drosophila and humans are quite 
different. Is it safe to assume that these assertions form a 
coherent whole? The best answer seems to be maybe, 
depending on the particular assertions and the problem 
context. To improve the coherence of evidence assemblies, 
therefore, we will want to take into consideration several 
aspects of context when deciding whether to join matches.  

The Ant Hill is currently implemented to run on 
individual computers in a manner that simulates distributed 
execution by randomizing the order of agent actions. For 
the next phase of Ant Hill development we will be re-
implementing the system to run on an openMosix cluster 
including 20 processors. 

Finally, we are planning to open up the Ant CAFÉ’s data 
flow to accept assertions about the world from other 
sources that can be included in evidence assembly. For 
example, we anticipate assembling assertions created via 
relatively accurate extraction of relations from text, 
deduction over existing relations with domain-specific 
models, and direct input from users. 

6 Conclusions 
This paper describes a multi-agent system that addresses 

a difficult problem requiring scalable coordination of 
massive computational resources. The Ant CAFÉ is 
developing new methods for finding and organizing 
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evidence from massive data that corroborates analyst 
hypotheses. The Ant CAFÉ architecture is unusual in that 
it combines multiple techniques of swarm intelligence: the 
paragraph clustering process emulates nest sorting, the 
relation identification process resembles foraging, and the 
evidence assembly process can be compared to nest 
construction. Furthermore, the evidence assembly process 
uses pheromones as a coordination mechanism in relatively 
complex semantic spaces. These spaces are defined by the 
graph structures of the concept maps, and the manifestation 
set trees for each concept in the maps. 

Our preliminary results lend support to the claim that 
swarming information extraction can operate effectively 
over massive data. More specifically, our experiments with 
the Most Likely Collisions algorithm have demonstrated 
that desirable system responses on the level of sets of 
evidence assemblies can emerge from local decisions about 
the semantic proximity of paired concepts. To the extent 
supported by the different types of data, the Ant Hill 
organizes the evidence into assemblies that each tell a 
different story about how the data corroborates the 
hypothesis. Furthermore, we believe that our metric for 
clarity has both an intuitive interpretation that corresponds 
to what analysts hope to obtain from a search, and a 
quantitative basis that will guide substantial and 
increasingly sophisticated research in the future. 
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