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Abstract. Information processing operations in support of intelligence analysis 
are of two kinds. They may sift relevant data from a larger body, thus reducing 
its quantity, or sort that data, thus reducing its entropy. These two classes of op-
eration typically alternate with one another, successively shrinking and organiz-
ing the available data to make it more accessible and understandable. We term 
the resulting construct, the “semantic pyramid.” We sketch the general structure 
of this construct, and illustrate two adjacent layers of it that we have imple-
mented in the Ant CAFÉ. 

1. Introduction 

In moving from raw data to finished policy recommendations, intelligence analysis 
must address two fundamental problems. First, the volume of available data is far 
more than can be processed by a policymaker, and must be reduced. Second, each 
item of data is susceptible to multiple interpretations, and must be related to other data 
to increase its semantic content. 

Typically, these processes alternate. Sifting removes less relevant data. That which 
remains is sorted to increase its semantic content. Then further sifting reduces the data 
even more, permitting more sophisticated sorting. Eventually, a broad base of seman-
tically poor data becomes a much smaller collection of data with rich associated se-
mantics. 

We motivate this view of analysis processes theoretically and illustrate it in Section 
2. Then we use this distinction to describe a novel method for information retrieval in 
Section 3. Our sorting and sifting mechanisms are inspired by techniques used by ants 
to sort their nests and forage for food. Section 4 offers experimental evidence for the 
effectiveness of our mechanisms, and Section 5 concludes. 

2. The Semantic Pyramid 

The alternation of sifting and sorting is driven by a fundamental constraint from com-
plexity theory: as the intricacy of analysis increases, the volume of data must decrease 
to permit timely processing. 
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2.1. Computational Complexity 

An important branch of theoretical computer science classifies various algorithms into 
different complexity classes [8]. This theory offers the following insights, which are 
critical for information processing in support of intelligence analysis. 

The amount of time (computer cycles) or space (computer memory) needed to 
solve a problem depends on two things: the structure of the problem (finding records 
in a database vs. proving a logical theorem) and the size of the problem instance 
(processing a database of 103 records vs. one of 109 records). As one might expect, the 
larger the problem instance, the more time and/or space is needed to solve it. Less ob-
viously, the mathematical function that translates the size of a problem into the time 
or space needed to solve it depends on the algorithm used to solve it, and thus on the 
nature of the problem. If n is the size of a problem, the time required to solve the 
problem might scale (for example) as log(n), or n2, or n10000, or en, or n!, depending on 
the structure of the problem.  

Not surprisingly, processes that we think of as nontrivial (e.g., proving logical 
theorems) tend to be more sensitive to the size of the problem than simpler processes 
(e.g., finding the string “abc” in a document). Intelligence analysis requires processes 
across the complete range of such complexity. Complexity theory warns us that if we 
want answers in a timely fashion, we must limit the size of the problems that we ask 
these processes to solve, and that this limitation must be more severe for the more 
complex processes than for the simpler ones. 

2.2. Climbing the Pyramid 

Intelligence analysis typically begins with voluminous low-level data, and ends with 
closely reasoned analyses that support policy makers. Complexity theory shows that it 
is probably impossible to solve many problems perfectly in a reasonable amount of 
time. Thus, we must be satisfied with approximate rather than perfect answers. Fur-
thermore, even approximate methods bog down when given problems that are too 
large. For example, the complex logical analysis that is required at the higher levels of 
analysis can only be applied to a small 
body of data. Thus sifting, or removing ir-
relevant or low-priority data, is an essen-
tial step in moving from raw data to fin-
ished product. 

In general, we can identify at least four 
levels in the process, summarized in Fig-
ure 1. 

At the lowest level, filtering (a sifting 
operation) applies very efficient tech-
niques to separate a relatively small pro-
portion of incoming data as potentially in-
teresting. Ideally, the filtering process 
would touch every piece of incoming data. 
In practice, however, it may be necessary 
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Figure 1. The Semantic Pyramid.—
Italicized processes sift; nonitalicized 
processes sort. 



to sample the input stream instead, with the intensity of sampling increasing in re-
sponse to positive tests.  

Sometimes, filter tests can be direct, for example, looking for the presence of cer-
tain terms. In other situations one must look for anomalies – deviations from expecta-
tions. (Anomaly detection does, however, require presorting: for example, to know 
that the data represents credit card purchases of individuals with purchasing histories). 

Filtered data is then indexed, to enable it to be accessed quickly. The indices used 
by current internet search engines, for example, record the presence of words in each 
document. Semantic indexing, in comparison, strives to capture the meaning of 
words, phrases, sentences, and possibly other levels of meaning expressed by the data. 
Sorting processes like indexing do not reduce the size of the data, but make it more 
orderly, in order to support higher levels of processing. 

Search uses the organization imposed by indexing to sift out the items of data that 
most closely match the analyst’s requirements.  

Analysis manipulates the smallest set of data: not the full volume of raw data, nor 
even the filtered data, but the subset that matches the analyst’s current interests and 
requirements. It is another sorting process, detecting logical relationships among dif-
ferent assertions, constructing hypotheses, and verifying or refuting them. This level 
of analysis is the most complex computationally, and requires the previous levels of 
processing to reduce the amount of data to be handled. 

These four levels are only illustrative. Closer analysis reveals further levels of dis-
tinct operations. Our fundamental claim is that however deep one carries this analysis, 
one will find an alternation of sifting and sorting, reducing the volume of data, then 
applying organizing processes to what remains. The structure provided by each sort-
ing process enables more complex sifting at the next level, while the reduction in vol-
ume at each level of sifting permits application of more complex sorting algorithms at 
the next level. 

3. Sorting and Sifting in Ant CAFÉ  

We have been developing a system, called the Ant CAFÉ, that applies these concepts 
in doing information retrieval from massive docu-bases [16]. In this section we sum-
marize the high-level behavior of the Ant CAFÉ, then discuss how it retrieves infor-
mation of likely interest to the analyst (sifting) and how it organizes data to make this 
retrieval more efficient (sorting). 

3.1. The Ant CAFÉ Feedback 
Loop 

Figure 2 shows the basic concept 
of the Ant CAFÉ. The system has 
two main components. At the top 
of the figure, the Analyst Model-
ing Environment (AME) [1] main-
tains symbolic models at several 

Instantiated 
Map with 

Supporting  
Documents

Ant Hill of Massive Data

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adheren

t of

Person

associate of

Concept Map

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Instantiated 
Map with 

Supporting  
Documents

Ant Hill of Massive DataAnt Hill of Massive Data

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adheren

t of

Person

associate of

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adheren

t of

Person

associate of

Concept Map

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

 
Figure 2. Ant CAFÉ Concept. 



levels. 
• Community models represent the interest of a group of analysts working on a 

common topic. They are the most general models and change the least rapidly. 
• Tasking models represent a specific tasking assigned to an analyst. 
• Analyst models represent the current state of an analyst’s interests and hy-

potheses. 
• Query models reflect the immediate information that an analyst wishes to ac-

cess. 
The AME constructs and maintains these models in response to observations of 

how the analyst interacts with information. Except for the query model, the analyst 
does not formulate these models explicitly. Currently, we represent the models as 
concept maps [4]. 

The models produced by the AME are passed to another component of the Ant 
CAFÉ, the Ant Hill (bottom of Figure 2). In contrast to the classic machine learning 
mechanisms of the AME, the Ant Hill uses techniques inspired by insect societies 
[12]. These techniques offer several benefits compared to more traditional algorithms: 

• They are intrinsically distributed and decentralized. Thus the system can be 
scaled to deal with massive data by distributing it across multiple processors. 

• Their processing model is dynamic, not query-driven. A query system does 
processing only when queried, and typically acts on a static system state. A 
dynamic system processes continuously, not just when a query is received, and 
continues to run while the system changes. 

• They are anytime rather than input-process-output (IPO). An IPO system pro-
vides no information until the final answer is ready. An anytime system 
quickly produces approximate answers, and gives more refined information the 
longer the user waits. 

• They are stochastic, driven by random sampling of data rather than complete 
enumeration. Thus users can dynamically trade accuracy against processing 
time by modulating the degree of coverage applied to the data. 

This paper describes two such techniques. Dynamic granularity ant clustering 
(sorting) is inspired by the way that ants cluster the contents of their nests. Informa-
tion foraging (sifting) is inspired by the pheromone mechanisms that ants use to con-
struct paths between their nests and food sources.  

3.2. Dynamic Granularity Ant Clustering 

Ants sort the contents of their nests into piles of similar items [5]. As ants wander 
around, they maintain a short-term memory of the kinds of things they have recently 
encountered, and each time they encounter an object, they assess its similarity to other 
recently seen objects. An ant tends to pick up objects that are dissimilar to their sur-
roundings, and to deposit objects that are similar to those in the ant’s current envi-
ronment. Over time, this distributed algorithm yields global clusters of high homoge-
neity. 

Previously [13, 14], we eliminated the distinction between ants and documents, and 
gave each document the ability to move itself, based on its perception of its environ-
ment. Like the original algorithm, this refinement partitions the set of documents into 



internally homogeneous sets, but does not provide any structure to guide subsequent 
retrieval operations. 

Recently, we have developed a hierarchical version of this algorithm that can be 
distributed across multiple processors.  Dynamic Granularity Ant Clustering (DGAC) 
repeatedly travels down its current hierarchical structure looking for nodes (sets of 
documents) that are internally cohesive, and moving these nodes to locations where 
they fit better. The resulting hierarchy reduces the complexity of subsequent retrieval. 

The similarity function that drives the clustering is derived from the community 
model constructed by the Analyst Modeling Environment. In a previous filtering stage 
of processing, each document is indexed against the concepts represented in the 
community model. A document is considered to match a concept if it contains a mor-
pheme that is subsumed by the concept in WordNet [7, 11]. The similarity of two 
documents is then measured by the standard cosine measure between their respective 
concept vectors.  

Figure 3 illustrates the three main steps of this algorithm on a single machine. In 
the Figure, documents (at the bottom) are distinguished from higher-level nodes (cir-
cles), but the algorithm treats them all as “nodes.” Each node maintains an estimate of 
its current cohesiveness in [0, 1] (the average pair-wise similarity across all docu-
ments that it currently subsumes) and a summary of its documents that it can use for 
comparing its similarity to other nodes (say, a vector average of its documents’ con-
cept vectors). The system also maintains a threshold θ ∈ [0,1), initially 0, whose func-
tion is similar to that of temperature in simulated annealing [10]. The cohesiveness of 
a document is 1, and its summary is its concept vector. 

At any given cycle, one node is active. In Figure 3a, the current node is document 
H. In the “select” step, the node compares its cohesiveness 
c with θ. If c <= θ, the node selects one of its children sto-
chastically, favoring those that are least cohesive, and acti-
vates it. (Because document nodes have c = 1, this case 
never applies to them.) If c > θ, the node leaves its current 
parent and is attached to its grandparent (A in Figure 3b). 
(In doing so, it is moving the entire sub-tree that descends 
from it.) Then it randomly chooses one of its new siblings 
(B in Figure 3b) and estimates whether a merger with this 
sibling would yield coherence greater than θ. If so, it 
merges with that sibling under a new node (K in Figure 
3c), measures the actual similarity σ achieved, and updates 
θ with the Q-learning rule θt+1

 = (1 - α)θt + ασ [15]. (α, the 
learning rate, is an arbitrary parameter in [0,1]. Our ex-
periments use α = 0.02.) Then the root becomes active, and 
the process repeats. 

Initially, when the threshold θ is low, nodes readily 
climb up the tree and seek new partners. As θ increases, it 
becomes more difficult for nodes to relocate, leading the 
system to stabilize. 

Hierarchical clustering is not new [2, 9], but the stan-
dard approaches have several limitations that this algorithm 
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tering. 



avoids:  
• It does not require a centralized similarity matrix over all data items, and thus 

can readily be distributed across many machines. (In this case, each machine 
maintains its own θ, and periodically normalizes this value with those on other 
machines.) 

• The population of data items can change dynamically as the algorithm runs, 
without restarting. The algorithm discovers misplaced documents and moves 
them dynamically. The similarity estimated when doing the merge can be less 
than that measured after the merge, particularly if the summary used in the es-
timation has been invalidated by the addition of new documents. So θ can de-
crease, permitting previously settled sub-trees to move. 

• The similarity function used in the clustering operation (that is, the set of con-
cepts attested in the community model) can also be changed incrementally 
without restarting the system. To the degree that the new function overlaps the 
old, the system reuses existing structure that has been constructed. 

• Traditional hierarchical clustering is monotonic: once two nodes have merged 
into a higher-order node, they cannot separate again. This algorithm permits 
nodes to dissolve as well as to join, enabling the system to search continuously 
for the best fit to the data. 

• This algorithm is stochastic, since node movements are evaluated by compar-
ing a sample of their leaf nodes. As a result, users can trade accuracy against 
processing time. 

Clustering runs continuously against the community model, even when there is no 
query from the user. It continuously organizes the underlying body of data to take ac-
count of changes in both the set of documents available and the slowly evolving 
community map.  

3.3. Information Foraging 

Ants construct efficient paths between their nests and food sources by depositing 
chemicals (pheromones) on the ground whenever they are carrying food, and by 
climbing the gradient of these chemicals whenever they are searching for food. As 
many ants discover food and deposit pheromones, discrete pheromone paths emerge 
that guide the ants’ otherwise random movements toward food sources. 

Dynamic Granularity Ant Clustering organizes sets of documents into hierarchical 
clusters. Each document is a leaf in the tree, and the similarity of documents under 
each node increases as one descends the tree from the root to the leaves. In informa-
tion foraging, an analyst model or query model generates a stream of forager agents. 
Each forager agent begins at the root and descends the tree until it reaches a leaf. 
Then it evaluates a function that computes the relevance of the document that it has 
found to the higher-level query. This relevance score is deposited at the leaf, and 
propagates back up the tree toward the root, combining with any other relevance de-
posits from foragers representing the same model, and diminishing in strength with 
each step. As successive foragers descend the tree, they select their path at each node 
stochastically by evaluating a Boltzmann-Gibbs distribution weighted by the rele-



vance scores at each of the accessible next steps. The relevance scores function like 
ant pheromones, building up paths for later foragers to follow.  

In general, searching for a data item in a population of size N requires time on the 
order of N (look at each item in turn until you find the one you want). If the items can 
be ordered linearly by their relevance, one can do the search in time logarithmic in N, 
but a single linear order is not realistic for most documents of interest to intelligence 
analysis. In our foraging system, the maximum length of the relevance path to docu-
ments of interest is the depth of the tree, which is logarithmic in the total number of 
documents (where the base of the logarithm is the mean branching factor at each 
node). Thus we achieve searching efficiencies comparable to those for linearly or-
dered data, even for data that cannot be usefully constrained to a total order.  

The cost of this efficiency is constructing the hierarchical clustering of documents 
in the first place. Thus the sifting process of information foraging requires a preceding 
sorting process of constructing a hierarchical structure that will support the foraging. 
The Dynamic Granularity Ant Clustering algorithm described in Section 3.1 provides 
this structure. 

4. Experimental Results 

We have explored the potential of information foraging and hierarchical ant clustering 
with two sets of experiments. Both are based on a static set of 500 documents drawn 
from the CNS database [3] and hierarchically clustered by similarity. In principle, this 
kind of algorithm scales very well. We have used more mature ant clustering tech-
niques to organize a dynamically changing population of more than 100,000 docu-
ments on a cluster of 16 processors [13, 14], but those techniques produced only a 
partitioning of the data, not a hierarchy, and so do not support the interactive experi-
ments with foraging that we report here. We are currently preparing an experiment 
that will demonstrate a refinement of the hierarchical clustering algorithm to a docu-
ment population on the order of 104. 

4.1. Effectiveness of Foraging 

To set up the experiment, we compute each document’s relevance to the query and 
normalize this value so that the sum of relevance is 1. We compare the foraging proc-
ess with a random process. While this benchmark may seem an unfair comparison, it 
is quite widely accepted in the pattern recognition community in the context of ROC 
(receiver operating characteristic) curves, a performance visualization to which our 
analysis is closely related [6]. At each step, the process under study selects a docu-
ment, adds its relevance to the process’s current total relevance, and then removes it 
from the population. Thus both processes begin with a relevance of 0, and end with a 
relevance of 1 (having seen all documents). In the random process, the documents are 
selected at random. In the foraging process, each successive forager takes advantage 
of the relevance paths laid down by previous foragers. 

Figure 4 compares how the two processes accumulate relevance. Initially, before 
relevance paths develop, the processes are comparable. Then the rate of accumulating 



relevance accelerates dra-
matically for the foraging 
process, as subsequent fora-
gers take advantage of the 
paths developed by previous 
ones.  

4.2. Effectiveness of 
Clustering 

To evaluate our clustering 
method, we use an artificial 
retrieval benchmark, called 
“seekers,” that can readily be 
applied periodically during clustering. For each document in the population, we pre-
pare 9 seekers with the same concept vector. Seekers follow the clustering hierarchy 
from the root to a leaf, following the branch at each level with the greatest similarity 
to a sample of leaves. The seeker metric is the proportion of seekers that terminate 
their search at a document that has a similarity of at least 0.95 with their concept vec-
tor.  

Figure 5 shows how seeker success (square symbols) increases as clustering pro-
gresses. (In this example, the collection of documents and the concept vector are 
static.) Like many stochastic processes with emergent behavior, the system exhibits a 
phase shift. Before 45000 cycles, there is little apparent improvement in seeker suc-
cess. After 48000 cycles, seeker success jumps dramatically. The second series in the 
plot (lozenze symbols) shows the number of immediate descendants of the root node 
in the emergent hierarchy. At step 0, every document is a child of the root, but as the 
algorithm progresses, more structure develops below the root, with a corresponding 
decrease in the number of immediate children of the root. This decrease continues un-
til 48000 cycles, when the multiplicity of the root levels off at an average of 3.7.  

The stabilization of 
the number of root 
children, and the cor-
responding increase in 
the seeker success, 
show that the data hi-
erarchy has reached a 
stable configuration 
that captures the in-
trinsic structure of the 
data. Because the clus-
tering process is dy-
namic rather than 
query-driven, it can 
achieve this stable 
condition in the back-
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Figure 4. Progress of Clustering. 
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ground, so that the hierarchy is immediately available for foragers to service a query. 
From an engineering perspective, the speed of this convergence is a critical design pa-
rameter that can help determine the number of parallel processors that are needed to 
accommodate a given rate of change of the document population or the community 
model. 

The asymptotic success rate of 25% for the seekers reflects the stochastic nature of 
the algorithm, and the convergence imposed on the system by the linear learning rate 
of the threshold θ. The stochastic character of the algorithm is what permits the sys-
tem to accommodate dynamic data, and one is willing to tolerate an imperfect hierar-
chy as the price of that flexibility. In addition, we are currently testing a more sophis-
ticated learning mechanism for governing convergence, one that we will expect to 
yield higher asymptotic rates of seeker success.  

5. Conclusion 

Successful intelligence analysis requires both sifting masses of available data to re-
duce their quantity, and sorting them to increase their semantic content. These proc-
esses often alternate with one another. Sifting reduces the volume of data so that sort-
ing can apply increasingly complex analyses within the bounds of available time, 
while sorting structures the data in a way that makes the next round of sifting more ef-
ficient. 

This alternation is apparent in two insect-inspired processes that we are using to 
address the massive data problem. Experiments with these mechanisms demonstrate 
their promise in concurrently increasing the structure of data and reducing its volume 
in support of higher-level analyses. 
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