
Sift and Sort: Climbing the Semantic Pyramid

H. Van Dyke Parunak, Peter Weinstein, Paul Chiusano, Sven Brueckner

Altarum Institute
3520 Green Court, Suite 300, Ann Arbor, MI 48105

{van.parunak,peter.weinstein,paul.chiusano,sven.brueckner}@altarum.org

Abstract. Information processing operations in support of intelligence analysis
are of two kinds. They may sift relevant data from a larger body, thus reducing
its quantity, or sort that data, thus reducing its entropy. These two classes of op-
eration typically alternate with one another, successively shrinking and organiz-
ing the available data to make it more accessible and understandable. We term
the resulting construct, the “semantic pyramid.” We sketch the general structure
of this construct, and illustrate two adjacent layers of it that we have imple-
mented in the Ant CAFÉ.

1. Introduction

In moving from raw data to finished policy recommendations, intelligence analysis
must address two fundamental problems. First, the volume of available data is far
more than can be processed by a policymaker, and must be reduced. Second, each
item of data is susceptible to multiple interpretations, and must be related to other data
to increase its semantic content.

Typically, these processes alternate. Sifting removes less relevant data. That which
remains is sorted to increase its semantic content. Then further sifting reduces the data
even more, permitting more sophisticated sorting. Eventually, a broad base of seman-
tically poor data becomes a much smaller collection of data with rich associated se-
mantics.

We motivate this view of analysis processes theoretically and illustrate it in Section
2. Then we use this distinction to describe a novel method for information retrieval in
Section 3. Our sorting and sifting mechanisms are inspired by techniques used by ants
to sort their nests and forage for food. Section 4 offers experimental evidence for the
effectiveness of our mechanisms, and Section 5 concludes.

2. The Semantic Pyramid

The alternation of sifting and sorting is driven by a fundamental constraint from com-
plexity theory: as the intricacy of analysis increases, the volume of data must decrease
to permit timely processing.

Proceedings of ESOA'05, LNCS, Springer. http://www.springeronline.com/lncs, © Springer-Verlag.

2.1. Computational Complexity

An important branch of theoretical computer science classifies various algorithms into
different complexity classes [8]. This theory offers the following insights, which are
critical for information processing in support of intelligence analysis.

The amount of time (computer cycles) or space (computer memory) needed to
solve a problem depends on two things: the structure of the problem (finding records
in a database vs. proving a logical theorem) and the size of the problem instance
(processing a database of 103 records vs. one of 109 records). As one might expect, the
larger the problem instance, the more time and/or space is needed to solve it. Less ob-
viously, the mathematical function that translates the size of a problem into the time
or space needed to solve it depends on the algorithm used to solve it, and thus on the
nature of the problem. If n is the size of a problem, the time required to solve the
problem might scale (for example) as log(n), or n2, or n10000, or en, or n!, depending on
the structure of the problem.

Not surprisingly, processes that we think of as nontrivial (e.g., proving logical
theorems) tend to be more sensitive to the size of the problem than simpler processes
(e.g., finding the string “abc” in a document). Intelligence analysis requires processes
across the complete range of such complexity. Complexity theory warns us that if we
want answers in a timely fashion, we must limit the size of the problems that we ask
these processes to solve, and that this limitation must be more severe for the more
complex processes than for the simpler ones.

2.2. Climbing the Pyramid

Intelligence analysis typically begins with voluminous low-level data, and ends with
closely reasoned analyses that support policy makers. Complexity theory shows that it
is probably impossible to solve many problems perfectly in a reasonable amount of
time. Thus, we must be satisfied with approximate rather than perfect answers. Fur-
thermore, even approximate methods bog down when given problems that are too
large. For example, the complex logical analysis that is required at the higher levels of
analysis can only be applied to a small
body of data. Thus sifting, or removing ir-
relevant or low-priority data, is an essen-
tial step in moving from raw data to fin-
ished product.

In general, we can identify at least four
levels in the process, summarized in Fig-
ure 1.

At the lowest level, filtering (a sifting
operation) applies very efficient tech-
niques to separate a relatively small pro-
portion of incoming data as potentially in-
teresting. Ideally, the filtering process
would touch every piece of incoming data.
In practice, however, it may be necessary

Analyze

Search

Index

Filter

Analyze

Search

Index

Filter

Figure 1. The Semantic Pyramid.—
Italicized processes sift; nonitalicized
processes sort.

to sample the input stream instead, with the intensity of sampling increasing in re-
sponse to positive tests.

Sometimes, filter tests can be direct, for example, looking for the presence of cer-
tain terms. In other situations one must look for anomalies – deviations from expecta-
tions. (Anomaly detection does, however, require presorting: for example, to know
that the data represents credit card purchases of individuals with purchasing histories).

Filtered data is then indexed, to enable it to be accessed quickly. The indices used
by current internet search engines, for example, record the presence of words in each
document. Semantic indexing, in comparison, strives to capture the meaning of
words, phrases, sentences, and possibly other levels of meaning expressed by the data.
Sorting processes like indexing do not reduce the size of the data, but make it more
orderly, in order to support higher levels of processing.

Search uses the organization imposed by indexing to sift out the items of data that
most closely match the analyst’s requirements.

Analysis manipulates the smallest set of data: not the full volume of raw data, nor
even the filtered data, but the subset that matches the analyst’s current interests and
requirements. It is another sorting process, detecting logical relationships among dif-
ferent assertions, constructing hypotheses, and verifying or refuting them. This level
of analysis is the most complex computationally, and requires the previous levels of
processing to reduce the amount of data to be handled.

These four levels are only illustrative. Closer analysis reveals further levels of dis-
tinct operations. Our fundamental claim is that however deep one carries this analysis,
one will find an alternation of sifting and sorting, reducing the volume of data, then
applying organizing processes to what remains. The structure provided by each sort-
ing process enables more complex sifting at the next level, while the reduction in vol-
ume at each level of sifting permits application of more complex sorting algorithms at
the next level.

3. Sorting and Sifting in Ant CAFÉ

We have been developing a system, called the Ant CAFÉ, that applies these concepts
in doing information retrieval from massive docu-bases [16]. In this section we sum-
marize the high-level behavior of the Ant CAFÉ, then discuss how it retrieves infor-
mation of likely interest to the analyst (sifting) and how it organizes data to make this
retrieval more efficient (sorting).

3.1. The Ant CAFÉ Feedback
Loop

Figure 2 shows the basic concept
of the Ant CAFÉ. The system has
two main components. At the top
of the figure, the Analyst Model-
ing Environment (AME) [1] main-
tains symbolic models at several

Instantiated
Map with

Supporting
Documents

Ant Hill of Massive Data

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adheren

t of

Person

associate of

Concept Map

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Instantiated
Map with

Supporting
Documents

Ant Hill of Massive DataAnt Hill of Massive Data

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adheren

t of

Person

associate of

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adheren

t of

Person

associate of

Concept Map

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Terrorist

Mid-East CountryRadical Sect

citizen of

common in
adhere

nt of

Person

associate of

Figure 2. Ant CAFÉ Concept.

levels.
• Community models represent the interest of a group of analysts working on a

common topic. They are the most general models and change the least rapidly.
• Tasking models represent a specific tasking assigned to an analyst.
• Analyst models represent the current state of an analyst’s interests and hy-

potheses.
• Query models reflect the immediate information that an analyst wishes to ac-

cess.
The AME constructs and maintains these models in response to observations of

how the analyst interacts with information. Except for the query model, the analyst
does not formulate these models explicitly. Currently, we represent the models as
concept maps [4].

The models produced by the AME are passed to another component of the Ant
CAFÉ, the Ant Hill (bottom of Figure 2). In contrast to the classic machine learning
mechanisms of the AME, the Ant Hill uses techniques inspired by insect societies
[12]. These techniques offer several benefits compared to more traditional algorithms:

• They are intrinsically distributed and decentralized. Thus the system can be
scaled to deal with massive data by distributing it across multiple processors.

• Their processing model is dynamic, not query-driven. A query system does
processing only when queried, and typically acts on a static system state. A
dynamic system processes continuously, not just when a query is received, and
continues to run while the system changes.

• They are anytime rather than input-process-output (IPO). An IPO system pro-
vides no information until the final answer is ready. An anytime system
quickly produces approximate answers, and gives more refined information the
longer the user waits.

• They are stochastic, driven by random sampling of data rather than complete
enumeration. Thus users can dynamically trade accuracy against processing
time by modulating the degree of coverage applied to the data.

This paper describes two such techniques. Dynamic granularity ant clustering
(sorting) is inspired by the way that ants cluster the contents of their nests. Informa-
tion foraging (sifting) is inspired by the pheromone mechanisms that ants use to con-
struct paths between their nests and food sources.

3.2. Dynamic Granularity Ant Clustering

Ants sort the contents of their nests into piles of similar items [5]. As ants wander
around, they maintain a short-term memory of the kinds of things they have recently
encountered, and each time they encounter an object, they assess its similarity to other
recently seen objects. An ant tends to pick up objects that are dissimilar to their sur-
roundings, and to deposit objects that are similar to those in the ant’s current envi-
ronment. Over time, this distributed algorithm yields global clusters of high homoge-
neity.

Previously [13, 14], we eliminated the distinction between ants and documents, and
gave each document the ability to move itself, based on its perception of its environ-
ment. Like the original algorithm, this refinement partitions the set of documents into

internally homogeneous sets, but does not provide any structure to guide subsequent
retrieval operations.

Recently, we have developed a hierarchical version of this algorithm that can be
distributed across multiple processors. Dynamic Granularity Ant Clustering (DGAC)
repeatedly travels down its current hierarchical structure looking for nodes (sets of
documents) that are internally cohesive, and moving these nodes to locations where
they fit better. The resulting hierarchy reduces the complexity of subsequent retrieval.

The similarity function that drives the clustering is derived from the community
model constructed by the Analyst Modeling Environment. In a previous filtering stage
of processing, each document is indexed against the concepts represented in the
community model. A document is considered to match a concept if it contains a mor-
pheme that is subsumed by the concept in WordNet [7, 11]. The similarity of two
documents is then measured by the standard cosine measure between their respective
concept vectors.

Figure 3 illustrates the three main steps of this algorithm on a single machine. In
the Figure, documents (at the bottom) are distinguished from higher-level nodes (cir-
cles), but the algorithm treats them all as “nodes.” Each node maintains an estimate of
its current cohesiveness in [0, 1] (the average pair-wise similarity across all docu-
ments that it currently subsumes) and a summary of its documents that it can use for
comparing its similarity to other nodes (say, a vector average of its documents’ con-
cept vectors). The system also maintains a threshold θ ∈ [0,1), initially 0, whose func-
tion is similar to that of temperature in simulated annealing [10]. The cohesiveness of
a document is 1, and its summary is its concept vector.

At any given cycle, one node is active. In Figure 3a, the current node is document
H. In the “select” step, the node compares its cohesiveness
c with θ. If c <= θ, the node selects one of its children sto-
chastically, favoring those that are least cohesive, and acti-
vates it. (Because document nodes have c = 1, this case
never applies to them.) If c > θ, the node leaves its current
parent and is attached to its grandparent (A in Figure 3b).
(In doing so, it is moving the entire sub-tree that descends
from it.) Then it randomly chooses one of its new siblings
(B in Figure 3b) and estimates whether a merger with this
sibling would yield coherence greater than θ. If so, it
merges with that sibling under a new node (K in Figure
3c), measures the actual similarity σ achieved, and updates
θ with the Q-learning rule θt+1

 = (1 - α)θt + ασ [15]. (α, the
learning rate, is an arbitrary parameter in [0,1]. Our ex-
periments use α = 0.02.) Then the root becomes active, and
the process repeats.

Initially, when the threshold θ is low, nodes readily
climb up the tree and seek new partners. As θ increases, it
becomes more difficult for nodes to relocate, leading the
system to stabilize.

Hierarchical clustering is not new [2, 9], but the stan-
dard approaches have several limitations that this algorithm

B

A

D

C

E F HG J

a. Select

B

A

D

C

E F HG J

c. Merge

B

A

D

C

E F HG J

b. Separate

K

B

A

D

C

E F HG J

a. Select

B

A

D

C

E F HG J

c. Merge

B

A

D

C

E F HG J

b. Separate

K

Figure 3. Dynamic
Granularity Ant Clus-
tering.

avoids:
• It does not require a centralized similarity matrix over all data items, and thus

can readily be distributed across many machines. (In this case, each machine
maintains its own θ, and periodically normalizes this value with those on other
machines.)

• The population of data items can change dynamically as the algorithm runs,
without restarting. The algorithm discovers misplaced documents and moves
them dynamically. The similarity estimated when doing the merge can be less
than that measured after the merge, particularly if the summary used in the es-
timation has been invalidated by the addition of new documents. So θ can de-
crease, permitting previously settled sub-trees to move.

• The similarity function used in the clustering operation (that is, the set of con-
cepts attested in the community model) can also be changed incrementally
without restarting the system. To the degree that the new function overlaps the
old, the system reuses existing structure that has been constructed.

• Traditional hierarchical clustering is monotonic: once two nodes have merged
into a higher-order node, they cannot separate again. This algorithm permits
nodes to dissolve as well as to join, enabling the system to search continuously
for the best fit to the data.

• This algorithm is stochastic, since node movements are evaluated by compar-
ing a sample of their leaf nodes. As a result, users can trade accuracy against
processing time.

Clustering runs continuously against the community model, even when there is no
query from the user. It continuously organizes the underlying body of data to take ac-
count of changes in both the set of documents available and the slowly evolving
community map.

3.3. Information Foraging

Ants construct efficient paths between their nests and food sources by depositing
chemicals (pheromones) on the ground whenever they are carrying food, and by
climbing the gradient of these chemicals whenever they are searching for food. As
many ants discover food and deposit pheromones, discrete pheromone paths emerge
that guide the ants’ otherwise random movements toward food sources.

Dynamic Granularity Ant Clustering organizes sets of documents into hierarchical
clusters. Each document is a leaf in the tree, and the similarity of documents under
each node increases as one descends the tree from the root to the leaves. In informa-
tion foraging, an analyst model or query model generates a stream of forager agents.
Each forager agent begins at the root and descends the tree until it reaches a leaf.
Then it evaluates a function that computes the relevance of the document that it has
found to the higher-level query. This relevance score is deposited at the leaf, and
propagates back up the tree toward the root, combining with any other relevance de-
posits from foragers representing the same model, and diminishing in strength with
each step. As successive foragers descend the tree, they select their path at each node
stochastically by evaluating a Boltzmann-Gibbs distribution weighted by the rele-

vance scores at each of the accessible next steps. The relevance scores function like
ant pheromones, building up paths for later foragers to follow.

In general, searching for a data item in a population of size N requires time on the
order of N (look at each item in turn until you find the one you want). If the items can
be ordered linearly by their relevance, one can do the search in time logarithmic in N,
but a single linear order is not realistic for most documents of interest to intelligence
analysis. In our foraging system, the maximum length of the relevance path to docu-
ments of interest is the depth of the tree, which is logarithmic in the total number of
documents (where the base of the logarithm is the mean branching factor at each
node). Thus we achieve searching efficiencies comparable to those for linearly or-
dered data, even for data that cannot be usefully constrained to a total order.

The cost of this efficiency is constructing the hierarchical clustering of documents
in the first place. Thus the sifting process of information foraging requires a preceding
sorting process of constructing a hierarchical structure that will support the foraging.
The Dynamic Granularity Ant Clustering algorithm described in Section 3.1 provides
this structure.

4. Experimental Results

We have explored the potential of information foraging and hierarchical ant clustering
with two sets of experiments. Both are based on a static set of 500 documents drawn
from the CNS database [3] and hierarchically clustered by similarity. In principle, this
kind of algorithm scales very well. We have used more mature ant clustering tech-
niques to organize a dynamically changing population of more than 100,000 docu-
ments on a cluster of 16 processors [13, 14], but those techniques produced only a
partitioning of the data, not a hierarchy, and so do not support the interactive experi-
ments with foraging that we report here. We are currently preparing an experiment
that will demonstrate a refinement of the hierarchical clustering algorithm to a docu-
ment population on the order of 104.

4.1. Effectiveness of Foraging

To set up the experiment, we compute each document’s relevance to the query and
normalize this value so that the sum of relevance is 1. We compare the foraging proc-
ess with a random process. While this benchmark may seem an unfair comparison, it
is quite widely accepted in the pattern recognition community in the context of ROC
(receiver operating characteristic) curves, a performance visualization to which our
analysis is closely related [6]. At each step, the process under study selects a docu-
ment, adds its relevance to the process’s current total relevance, and then removes it
from the population. Thus both processes begin with a relevance of 0, and end with a
relevance of 1 (having seen all documents). In the random process, the documents are
selected at random. In the foraging process, each successive forager takes advantage
of the relevance paths laid down by previous foragers.

Figure 4 compares how the two processes accumulate relevance. Initially, before
relevance paths develop, the processes are comparable. Then the rate of accumulating

relevance accelerates dra-
matically for the foraging
process, as subsequent fora-
gers take advantage of the
paths developed by previous
ones.

4.2. Effectiveness of
Clustering

To evaluate our clustering
method, we use an artificial
retrieval benchmark, called
“seekers,” that can readily be
applied periodically during clustering. For each document in the population, we pre-
pare 9 seekers with the same concept vector. Seekers follow the clustering hierarchy
from the root to a leaf, following the branch at each level with the greatest similarity
to a sample of leaves. The seeker metric is the proportion of seekers that terminate
their search at a document that has a similarity of at least 0.95 with their concept vec-
tor.

Figure 5 shows how seeker success (square symbols) increases as clustering pro-
gresses. (In this example, the collection of documents and the concept vector are
static.) Like many stochastic processes with emergent behavior, the system exhibits a
phase shift. Before 45000 cycles, there is little apparent improvement in seeker suc-
cess. After 48000 cycles, seeker success jumps dramatically. The second series in the
plot (lozenze symbols) shows the number of immediate descendants of the root node
in the emergent hierarchy. At step 0, every document is a child of the root, but as the
algorithm progresses, more structure develops below the root, with a corresponding
decrease in the number of immediate children of the root. This decrease continues un-
til 48000 cycles, when the multiplicity of the root levels off at an average of 3.7.

The stabilization of
the number of root
children, and the cor-
responding increase in
the seeker success,
show that the data hi-
erarchy has reached a
stable configuration
that captures the in-
trinsic structure of the
data. Because the clus-
tering process is dy-
namic rather than
query-driven, it can
achieve this stable
condition in the back-

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

Steps
R

oo
t C

hi
ld

re
n

0

0.05

0.1

0.15

0.2

0.25

0.3

Se
ek

er
 S

uc
ce

ss

rootChildren
seekerSuccess

Figure 4. Progress of Clustering.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475

Paragraphs Examined

To
ta

l R
el

ev
an

ce
 G

at
he

re
d

Foraging

Random Search

Foraging

Random Search

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475

Paragraphs Examined

To
ta

l R
el

ev
an

ce
 G

at
he

re
d

Foraging

Random Search

Foraging

Random Search

Figure 5. Effectiveness of Foraging in Hierarchically
Clustered Data.

ground, so that the hierarchy is immediately available for foragers to service a query.
From an engineering perspective, the speed of this convergence is a critical design pa-
rameter that can help determine the number of parallel processors that are needed to
accommodate a given rate of change of the document population or the community
model.

The asymptotic success rate of 25% for the seekers reflects the stochastic nature of
the algorithm, and the convergence imposed on the system by the linear learning rate
of the threshold θ. The stochastic character of the algorithm is what permits the sys-
tem to accommodate dynamic data, and one is willing to tolerate an imperfect hierar-
chy as the price of that flexibility. In addition, we are currently testing a more sophis-
ticated learning mechanism for governing convergence, one that we will expect to
yield higher asymptotic rates of seeker success.

5. Conclusion

Successful intelligence analysis requires both sifting masses of available data to re-
duce their quantity, and sorting them to increase their semantic content. These proc-
esses often alternate with one another. Sifting reduces the volume of data so that sort-
ing can apply increasingly complex analyses within the bounds of available time,
while sorting structures the data in a way that makes the next round of sifting more ef-
ficient.

This alternation is apparent in two insect-inspired processes that we are using to
address the massive data problem. Experiments with these mechanisms demonstrate
their promise in concurrently increasing the structure of data and reducing its volume
in support of higher-level analyses.

Acknowledgements

This study was supported and monitored in part by the Advanced Research and De-
velopment Activity (ARDA) and the National Geospatial-intelligence Agency (NGA)
under contract number NMA401-02-C-0020. The views, opinions, and findings con-
tained in this report are those of the author(s) and should not be construed as an offi-
cial Department of Defense position, policy, or decision, unless so designated by
other official documentation.

8. References

[1] R. Alonso and H. Li. Model-Guided Information Discovery for Intelligence Analysis. In
Proceedings of CIKM ’05, Bremen, Germany, 2005.

[2] P. Berkhin. Survey Of Clustering Data Mining Techniques. Accrue Software, San Jose,
CA, 2002. http://citeseer.ist.psu.edu/berkhin02survey.html.

[3] CNS. CNS WMD Databases. 2004. CD,

[4] J. W. Coffey, R. R. Hoffman, A. J. Cañas, and K. M. Ford. A Concept Map-Based Knowl-
edge Modeling Approach to Expert Knowledge Sharing. In Proceedings of IASTED Inter-
national Conference on Information and Knowledge Sharing, 2002.
http://www.ihmc.us/users/acanas/Publications/IKS2002/IKS.htm.

[5] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chretien.
The Dynamics of Collective Sorting: Robot-Like Ants and Ant-Like Robots. In J. A.
Meyer and S. W. Wilson, Editors, From Animals to Animats: Proceedings of the First In-
ternational Conference on Simulation of Adaptive Behavior, pages 356-365. MIT Press,
Cambridge, MA, 1991.

[6] T. Fawcett. ROC Graphs: Notes and Practical Considerations for Data Mining Research-
ers. HPL-2003-4, HP Laboratories, Palo Alto, CA, 2003.
http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf.

[7] C. Fellbaum, Editor. WordNet: An Electronic Lexical Database (Language, Speech, and
Communication). Cambridge, MA, MIT, 1998.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability. San Francisco, CA, W.H.
Freeman, 1979.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM Computing
Surveys, 31(3), 1999.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Sci-
ence, 220:671-80, 1983.

[11] G. A. Miller. WordNet: A Lexical Database for the English Language. 2002. Web Page,
http://www.cogsci.princeton.edu/~wn/.

[12] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69-101, 1997.
http://www.altarum.net/~vparunak/gotoant.pdf.

[13] H. V. D. Parunak, S. A. Brueckner, R. Matthews, and J. Sauter. Pheromone Learning for
Self-Organizing Agents. IEEE SMC, 35(3 (May)):316-326, 2005.
http://www.altarum.net/~vparunak/ParunakIEEE.pdf.

[14] H. V. D. Parunak, S. A. Brueckner, J. A. Sauter, and R. Matthews. Global Convergence of
Local Agent Behaviors. In Proceedings of Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS05), Utrecht, The Netherlands,
pages 305-312, 2005. http://www.altarum.net/~vparunak/AAMAS05Converge.pdf.

[15] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cambridge, MA,
MIT Press, 1998.

[16] P. Weinstein, H. V. D. Parunak, P. Chiusano, and S. Brueckner. Agents Swarming in Se-
mantic Spaces to Corroborate Hypotheses. In Proceedings of AAMAS 2004, New York,
NY, pages 1488-1489, 2004.
http://www.altarum.net/~vparunak/AAMAS04AntCAFE.pdf.

