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Abstract. To anticipate and prevent acts of terrorism, Indications and Warnings 
analysts try to connect clues gleaned from massive quantities of complex data. 
Multi-agent approaches to support Indications and Warnings are appropriate 
because ownership and security issues fragment the data. Furthermore, the 
massive scale of the data suggests the need for large numbers of agents. 
This paper presents the architecture and algorithms of our Ant CAFÉ system, 
which uses fine-grained swarming agents to extract and organize textual 
evidence that corroborates hypotheses about the state of the world. Multiple 
swarming processes operating in semantic spaces are required, including the 
clustering of paragraphs, identification of semantic relations in text, and 
assembly of evidence into structures that instantiate the hypothesis. 

1   Introduction 

The terrible events of 9/11 placed urgent priority on the need to anticipate and prevent 
acts of terrorism. In particular, Indications and Warnings (I&W) analysts try to 
connect clues gleaned from massive data to anticipate enemy action. By massive, we 
mean data measured in peta-bytes, with complex interconnectivity and heterogeneity 
at all levels of form and meaning. Massive computational power is required to handle 
such data. Therefore, scalability is a key issue and multi-agent approaches are prime 
candidates because of the inherently decentralized nature of their architectures. 

1.1   Problem 

I&W analysts at various intelligence agencies receive streams of data from numerous 
sources of varying quality. For example, there may be evidence that A has shipped 
explosives to X, and that B was seen taking photos of apartment building Y, located 
in X. Meanwhile, other evidence states that A and B both know terrorist C. Logically, 
one might deduce that there is a plan to blow up the apartment building; but it can be 
extremely difficult to generate this conclusion because the key evidence is buried in 
massive data. 
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We model I&W as an investigative process where analysts construct hypotheses 
that are tentative assertions about the world, then submit the hypotheses to systems 
that find and organize evidence to corroborate the hypotheses. We represent 
hypotheses as graphs of concepts at varying levels of abstraction. Finding evidence 
requires matching edges of the hypotheses graphs against document text. Organizing 
evidence means joining pieces of evidence according to the template provided by the 
hypothesis. Thus, corroborating a hypothesis resembles working a giant jigsaw puzzle 
with billions of pieces, and infinitely many alternative ways to construct solutions.  

Current information retrieval technology fails to support I&W adequately in two 
fundamental ways. First, these tools do not piece together clues that might be found 
scattered across numerous documents. Second, these tools lack the semantic 
understanding required to recognize relevant pieces of information that may manifest 
in different forms, while excluding information that is not relevant. Research in areas 
such as Information Extraction [7] and Question Answering [8] attempts a higher 
level of semantic interpretation of text; our research builds on this work in ways that 
handle open inquiry and are potentially scalable to handle massive data.  

1.2   Approach 

To deal with massive data, we follow the swarm intelligence approach. Swarm 
architectures are extremely decentralized and thus allow massive parallel processing. 
Swarm systems are often modeled on ants and other social insects [1, 3, 13]. 
Numerous, relatively simple agents make decisions in response to their local 
environments. Out of their coordinated action emerges intelligent collective behavior 
(e.g., air-conditioned termite nests 10 meters tall, networked paths for food collection 
that are minimal spanning trees). Stigmergy – coordination via changes to a shared 
environment [14] – is the key to efficient swarm behavior [6]. Agents achieve 
stigmergic coordination, using special markers such as chemical pheromones, or 
directly responding to changes in the problem state affected by other agents. 

To apply swarm intelligence for hypothesis corroboration requires breaking new 
ground in the field of swarming multi-agent systems. Typically, stigmergy occurs in 
simple and low-dimensional environments – often, for example, mapping directly to a 
two or three-dimensional physical space. In these topologies, there are no “small-
world” shortcuts, and the distance between any two points is easily calculated. 
Semantic spaces though, typically have a small-world, scale free structure [12] in 
which calculating distance requires either strong assumptions or sophisticated 
processing [15]. Objects in ontological spaces such as concepts and instances are 
often represented as graphs, which are naturally composed by linking edges. 

Furthermore, the complex nature of the I&W problem has led us to combine 
multiple swarming mechanisms in a single system, utilizing both marker-based and 
sematectonic stigmergy. These processes include clustering of text to yield an orderly 
space; identifying relations in text to yield matches; and assembly of matches into 
structures that instantiate hypotheses. Clustering has previously been achieved with 
swarming [1]. Relation identification is a very hard and currently salient research 
area, requiring natural language processing and extensive corpus annotation [11]. So 
far, our interest has been most focused on the process of evidence assembly. 
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A third innovation regards the manner in which evidence assembly organizes 
evidence. Our goal is clarity, a measure that quantifies the degree of understandability 
of a set of assemblies (the system’s response to an investigation at some point in 
time). In high-clarity solutions, a few assemblies stand out, they are coherent, and 
they are well differentiated from each other. For example, if an analyst hypothesizes 
the existence of scientists conducting gene regulation research to build biological 
weapons, we would like the system to construct evidence assemblies that, 
hypothetically, might describe Russian research on smallpox in the 1980’s, Iraqi 
research on plague in the 1990’s, and so on. Clarity, as a global metric, must emerge 
from the local behavior of evidence assembly agents, as they cannot calculate clarity 
explicitly without compromising the highly distributed nature of the architecture. 

This paper provides an overview of the achievements of the first year of the Ant 
CAFÉ1 project. Section 2 presents the initial Ant CAFÉ architecture, including 
clustering, relation identification, and evidence assembly. Section 3 describes our 
algorithm for evidence assembly in more detail. Section 4 reports some early results 
using generated data. Section 5 lays out future work. We conclude in Section 6. 

2   Ant CAFÉ Architecture 

The Ant CAFÉ architecture follows an iterative loop in which analysts ask the system 
to find evidence that supports a hypothesis, the system returns assemblies that 
organize relevant evidence, and the analyst reviews the evidence and in the process 
improves her understanding of the problem. The analyst-system interaction leads to a 
revised representation of the hypothesis. The loop repeats as the investigation 
advances. Figure 1 provides a high level overview. 

                                                           
1 The CAFÉ acronym stands for Composite Adaptive Fitness Evaluation. 

 
Fig. 1. Overview of the Ant CAFÉ architecture. 
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Hypotheses are represented as concept maps [5], which are utilized in every stage 
of processing, serving as templates for the construction of evidence assemblies. 
Concept maps are graphs with labeled nodes and edges. The nodes are nouns and the 
edges are verbs or verb-prepositions. We call the nouns and verbs concepts. We call 
two nodes and their connecting edge, together, a relation. We consider concept maps 
to be a low-commitment form of ontology-like symbolic knowledge representation. 
They are becoming ubiquitous for modeling domain knowledge, and are now widely 
taught in middle schools and elsewhere. 

The left side of Figure 1 depicts modeling the analyst’s interests as represented in 
the concept maps. Issues include initial acquisition of concept maps, tuning weights 
associated with concepts and relations to reflect analyst interests by observing their 
behavior, and evolving concept maps in semi-automatic ways to capture increasing 
understanding as investigations progress. This work is addressed by the Analyst 
Modeling Environment of Ant CAFÉ, developed by our colleagues at Sarnoff 
Corporation, and is outside the scope of this paper. 

The right side of Figure 1 includes clustering, relation identification, and evidence 
assembly. Each of these stages employs a distinct swarming mechanism. They are 
sequential in terms of logical data flow, but execute concurrently. All of the processes 
use anytime algorithms where an answer is available at any time, and the quality of 
the answer improves as time passes. Thus, relation identification can proceed without 
clustering (but with less efficiency), and evidence assembly can proceed while newly 
discovered relations enter the assembly process incrementally. 

In the following, we provide a high level description of these processing stages. 

2.1   Clustering 

Clustering creates order in the space of textual data, thereby increasing the efficiency 
of relation identification. Relation identification needs to match relations from the 
concept map to text. Therefore, we cluster with respect to a particular concept map.  

Paragraphs are the appropriate granularity for clustering. We assume that each 
noun and verb in the concept map is disambiguated to a particular word meaning, 
namely, to a synset in WordNet [10]. We consider a word of text as evidence for a 
concept if that word is in the synset, or in any synset that specializes that synset. We 
call these sets of synsets manifestation sets, or msets. Ant CAFÉ seeks to cluster all 
paragraphs that have evidence of any of the nodes (nouns) in the concept map. We 
exclude verbs, because concept map relations often have very generic verbs. 

Clusters of paragraphs emerge through stigmergic coordination of individual 
paragraphs on a presently arbitrary network of cluster nodes. In difference to the 
classical ant-based clustering, in which a population of active entities (ants) moves 
passive objects (eggs, larvae, bodies, etc.) around, we assign each paragraph a 
software agent that controls the movement of the paragraph based on local 
information. Paragraph agents estimate their similarity to other paragraphs in their 
current location by calculating pairwise similarity to a sample of those paragraphs. 
Pairwise similarity is currently defined as the number of concepts for which both 
paragraphs either have evidence, or both lack evidence. The paragraphs also estimate 
their similarity to the populations of a sample of neighboring cluster nodes. 
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Paragraphs then probabilistically decide whether to move to one of these neighboring 
nodes [2]. 

Global parameters control the size of the samples for the number of paragraphs to 
compare when estimating similarity with a node’s population, and for the number of 
neighboring nodes to test. As these sampling rates decrease, one would expect the 
convergence to slow. Preliminary experiments using 500 paragraphs located across 
ten cluster nodes do show the anticipated affects, but overall the algorithm is robust. 

2.2   Relation Identification 

Relation identification is the process of finding text that asserts the desired relation. 
When such text is found, the concepts of the target relation are associated with the 
words in the text that are members of the corresponding manifestation sets. For 
example, the concept map might contain relations such as: “TERRORIST-HAVE-
WEAPON”, “WEAPON-CONTAIN-AGENT”, “AGENT-CAUSE-DISEASE”. 

Consider a hypothetical sentence fragment such as “… is a carrier that can be used 
to incubate organisms including botulism, …”. The Ant CAFÉ will consider the 
underlined words in this fragment to be evidence of the relation AGENT-CAUSE-
DISEASE, because carrier is a kind of AGENT, incubate is a kind of CAUSE, and 
botulism is a kind of DISEASE. We call the association of carrier-incubate-botulism 
to AGENT-CAUSE-DISEASE a match. 

High-precision relation identification requires more research, but our swarm 
intelligence approach in Ant CAFÉ lets us deal with imprecise data. Thus, if a 
paragraph contains evidence for each concept in a relation, we use that paragraph to 
create a match, or potentially several. This method offers excellent recall, but very 
poor precision -- which could, however, be increased with sophisticated natural 
language filters. 

Our relation identification process is based on pheromone-based recruitment of 
Forager agents. Forager agents swarm over the space defined by the cluster nodes 
looking for matches for particular relations. When they find matches, they lay digital 
pheromones to attract other agents searching for the same relation. Through 
evaporation and propagation, these pheromones create a gradient that guides Forager 
agents and thus increases the efficiency of their search. The degree to which Forager 
agents follow the pheromone gradient is subject to an exploration/exploitation 
tradeoff. If foragers adhere slavishly to the gradient, then matches in previously 
barren locations may never be found. 

2.3   Evidence Assembly 

The relation identification process creates matches, who become agents in the 
evidence assembly process to form structures that instantiate the concept map. This 
process resembles a soup of molecules that join together to form larger molecules, 
driven by the current state of the emerging structure. 

Matches face two types of “join” decisions. They can join another match that 
instantiates the same concept map relation. In this case, each match has a binding in a 
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semantic space defined by three shared manifestation sets. Or, a match can join with 
another match that instantiates a concept map relation linked to its own relation. In 
this case, the join occurs in a semantic space defined by a single manifestation set.  

Figure 2 shows a screenshot from our Ant CAFÉ implementation that visualizes 
evidence assembly for two linked relations. Each window holds a manifestation set 
centered on the root concept. The relation AGENT-CAUSE-DISEASE is shown on 
the top and SOLDIER-HAVE-DISEASE on the bottom. Assemblies have random 
colors, and as matches join into assemblies, their lines grow thicker. 

The best solutions maximally preserve the information of the individual bindings 
when described on the level of the aggregated assemblies. We call this goal clarity, 
since preserving the information of individual bindings yields assemblies that are 
relatively well differentiated from one another. 

Consider an example of a join decision. If a match that binds DISEASE to flu is 
joined with a binding to lobar pneumonia, then the most specific subsuming (MSS) 
concept that includes both flu and lobar pneumonia describes the assembly best. The 
MSS is the lowest common ancestor in the manifestation set (here: respiratory 
disease). Figure 3 illustrates the assembly-level description (“vector”-“effect”-
“respiratory disease”) that results from joining “gene delivery vector”-“induce”-“flu” 

 
Fig. 2. Visualization of assembly in mset space. 
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Fig. 3. Match aggregation. 
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with “carrier”-“effect”-“lobar pneumonia”. Thus, to achieve high clarity matches 
should join with many other matches while minimizing distances between the 
individual bindings and the assembly MSS concepts. 

In our newly developed Most Likely Collisions (MLC) algorithm [4], evidence 
assemblies emerge from local decisions of match agents, which each contain three 
binding agents. A binding associates a concept from the concept map with a word in 
text. The current position of a binding agent is a location in the mset of the concept, 
where the home position is the synset of the text word, and the current position is 
somewhere on the path from the home position to the root of the mset tree. Binding 
agents move up and down this path, essentially marketing themselves at different 
levels of abstraction. 

The self-expression of a binding agent is a function of its current position and path 
length. An agent at home has perfect self-expression, while a binding at the root has 
zero self-expression (unless root is also home). Individual binding agents move 
probabilistically in response to two dynamically computed forces, which balance our 
desires to cluster similar binding agents, while minimizing their displacement from 
their respective home location: 

1. Attractive pheromone gradient to neighboring nodes. All binding agents deposit 
a pheromone that propagates and evaporates and thus attracts agents toward 
areas of the mset that contain greater numbers of binding agents. 

2. Attractive “rubber band” pulls home. As binding agents move further from their 
home position, the force pulling them back home increases. 

Binding agents suggest joining the current assemblies of other bindings that they 
meet as they move up and down in their manifestation sets. When consensus is 
reached among all of a match’s bindings, the match joins the elected assembly. 

4   Experiments 

This section reports on some initial experiments that investigate whether the MLC 
algorithm, based on local “join” decisions of matches, produces the desired emergent 
property of clarity in the resulting set of evidence assemblies. For this purpose, , we 
generated artificial populations of matches that vary with respect to the quality of 
potential solutions. The more orderly the data, the more we expect solutions with 
clarity. 

The test match populations were generated for a concept map with four relations, 
three forming a triangle. These relations were person-carry-bottle, bottle-contain-
liquid, person-drink-liquid, and person-live(in)-nation. These familiar relations were 
usedfor easy interpretation of the detailed content of emerging assemblies. 

Full Random is the least orderly type of match population. It is generated with 
bindings selected uniformly randomly from synsets in each concept’s manifestation 
set. Random Clumps has somewhat more orderly match populations in which the 
number of clumps of matches (n) and clump size (m) is set randomly with geometric 
distributions. In each match clump, a binding is selected for the three concepts in the 
match. Then, m-1 other matches are generated to be close to the base match, using 
geometrically distributed excursions from the base. Hidden Solution populations are 
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like Random Clumps, except that matches are constrained to be near base matches 
constrained to agree where the relations join in the concept map. In other words, 
Random Clumps include groups of matches for individual relations, but Hidden 
Solutions include groups of matches whose scope includes the full concept map. 
“Hidden Solutions (3)” and “(6)” include three and six such sets of matches, 
respectively. For each type of data, 30 matches are generated for each concept map 
relation. 

The experiments included nine runs for each of ten populations generated for each 
type of artificial data. Each run executes for 100 cycles. In each cycle, each binding 
and match agent has an opportunity to act (although not all agents do act, to avoid 
building in an assumption that all agents act the same number of times, which would 
not hold in a true distributed system). The experiments also include a baseline 
solution, which randomly assigns matches to one of six assemblies, rather than using 
the MLC algorithm. 

The experiments were evaluated with a number of metrics. Clarity is calculated as 
the product of the average fitness and differentiation of the three most-fit assemblies. 
The fitness of an assembly is the product of its self-expressiveness and its 
substantiality (size, including breadth and depth).  

Differentiation is a measure of the degree to which the top three assemblies differ 
from each other. Distances between pairs of assemblies are calculated with respect to 
the parts of the concept map that both assemblies cover. This calculation counts the 
numbers of nodes in the mset trees that are shared by the MSS of both assemblies, 
compared to the total number of nodes reaching from the root of the mset to the MSS 
of each assembly. This approach is basically a path-distance-based approach, which is 
inherently fragile [15]. 

The left plot in Figure 4 shows the average clarity achieved across 90 runs for each 
type of data as the runs progress. The more orderly the data, the greater the clarity 
achieved. In all cases, clarity improves most around cycle twenty-five. The high 
degree of order in this plot shows that MLC is essentially working as intended. 

The right plot in Figure 4 shows differentiation for each type of data. The four 
populations divide neatly depending on whether matches are generated in a manner 
where they are constrained to join well according to the concept map. 

  
Fig. 4. Average Clarity (left) and Average Differentiation (right) over time. 
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5   Future Work 

Currently, individual runs using the Most Likely Collisions algorithm are subject to a 
fair amount of noise. We believe that it will be possible to improve the responsiveness 
of local decision making by binding and match agents without compromising the 
decentralized nature of the algorithm. Specifically, we hope to improve global 
performance by tuning local behavior in response to local manifestation of the global 
state. For example, if global clarity is poor, local pheromone gradients are choppy and 
match agents should be more willing to abandon their current assemblies. 

More fundamentally, we plan to extend the evidence assembly algorithm to 
incorporate more semantic information about matches. One problem with our current 
approach is that joining matches for linked relations depends entirely on the 
compatibility of the shared concept. Since the matches will often derive from different 
documents, such joins may be incorrect. To improve the coherence of evidence 
assemblies, therefore, we will want to take into consideration the textual context of 
matches when deciding whether they should join.  

The three swarming processes of the Ant CAFÉ are currently implemented to run 
on individual computers in a manner that simulates distributed execution by 
randomizing the order of agent actions. For the next phase of our development we 
will be re-implementing the system to run on our in-house Linux cluster. 

Finally, we are planning to open up the Ant CAFÉ’s data flow to accept assertions 
about the world from other sources that can be included in evidence assembly. For 
example, we anticipate assembling assertions created via relatively accurate 
extraction of relations from text, deduction over existing relations with domain-
specific models, and direct input from users. 

6   Conclusions 

This paper describes Ant CAFÉ, a swarming agent system that addresses a difficult 
problem requiring scalable coordination of massive computational resources. 
Specifically, we present new methods for finding and organizing evidence from 
massive data that corroborates analyst hypotheses. The Ant CAFÉ architecture 
combines multiple techniques of swarm intelligence: paragraph clustering emulates 
nest sorting, relation identification resembles foraging, and evidence assembly 
compares to nest construction. Furthermore, evidence assembly coordinates agents in 
complex semantic spaces through marker-based stigmergy. 

Preliminary results indicate that swarming information extraction can operate 
effectively over massive data. Our experiments with the Most Likely Collisions 
algorithm demonstrate that desirable system-level evidence assemblies emerge from 
local decisions about the semantic proximity of paired concepts. Ant CAFÉ organizes 
the evidence into assemblies that each tell a different story about how data 
corroborates the hypothesis. Our metric for clarity has both an intuitive interpretation 
that corresponds to what analysts hope to obtain from a search, and a quantitative 
basis that will guide substantial and increasingly sophisticated research in the future. 
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