Tu: 9/3/13 Math 471, Fall 2013, Section 001 Lecture 1

1 Course intro
Notes :
e Take attendance.
e Instructor introduction.
e Handout : Course description.

— Note the exam days (and don’t be absent).

Bookmark the course webpage.

— Matlab: We’ll use it but I won’t have time to teach coding— note the office hours.

Tests : non-programmable calculators only, plus one-page of notes (one-sided for
midterm, two-sided for final).

e Assigned reading : Bradie, chapter 1.

e Not all topics from the text will be covered in class, some homework problems / test
problems may come from material in the text or course webpage, even if they aren’t
explicitly covered in class.

Numerical methods
e How to solve equations with computers
e Building blocks of all computer models
e How to use them — we cannot always trust a computed result
e “Black box” syndrome: Modelers beware!

The following graphic depicts 9 different models’ solutions to the linear advection equation in
spherical geometry. The models are all either operational climate models.

Test 11 4900 m, t = 6 days

Latitude

60E

120E

CAM-SE

180 120W

B60W

60E 120E 180

ICON MPI DWD

0 60E 120E 180

120W 60W 0 60E 120E 120W 60W]
Longitude
| I 1 I I I [[
0 0.2 04 0.6 .8 1

2 Representing numbers

Question 1:

e What representations are exact?

e Which are approximate?

2.1 Symbolic representation

Example 1:
T

[]
&lew o
)

120W

60W

OLAM
@

2.2 Numerical representation

We use a positional system. The position of each digit relative to the point guides our under-
standing of the number.

x =+ (dpdn—1dn—2 -~ dido.d—1d—2---)4

=£ (dpf" +dp1B" o+ dofO AT+ d BT)
B = base,
d; = digits, 0<d; <f—1 foralls

Other common bases are § = 8 and 8 = 16; perhaps 5 = 607
Example 2: 3 =10 : decimal
e (2013);0=2-10*+0-102+1-10' +3-10°

e (0.360)10=3-10"1+6-1072+0-1073

A
Example 3: [=2 : binary
e (101011.01)g =1-2°+0-2* +1-234+0-2241-2'+1-2040-271 4+ 1.272
=324+84+24+140.25=(4325);0=4-10' +3-10°+2-10"1 +5- 1072
A
Question 2: Are the above numerical representations exact?
A

Question 3: Why do humans prefer the decimal representation? Why would binary make
sense for computers?

A

2.3 Floating point representation
Text: section 1.3
e Computers use a ‘floating point representation’ for real numbers.

e Constant number of significant digits.

Unlike the previous two sections, floating point representations presume a finite number of digits,
and hence necessarily approximate irrational numbers and even some rationals.

Question 4: Is a floating point representation exact?

Question 5: Why would this be necessary in a typical computer, but not necessarily so for a
human?

A

A floating point number is represented as
xr = (O.dldQ"'dn)IB 'Be d1 750 (1)

where n is the number of significant digits, 5 is the base, and e is the exponent. The string of
digits, dyds - - - d;, is called the mantissa.

A floating point number system is defined by n, S and M, where M is an integer such that
—-M<e< M.

In IEEE double precision (the standard for most scientific computing), 5 = 2, n = 53, and
M = 1023. Numbers are stored across 64 bits (bit = binary digit). 1 bit = sign of mantissa,
1 bit = sign of exponent, the mantissa is stored across 52 bits, which leaves 10 bits for the
exponent.

Notes
e Floating point number systems are discrete (finite and not continuous) sets
e They have a maximum element and a minimum element

e They contain the number zero, and have a smallest positive element and a largest negative
element

Question 6: What does multiplication by ¢ do in (1)?

Example 4: Consider the floating point system defined by 8 =2, n =4, and M = 3.

1. What is the largest element in this set?

The largest element in any floating point system will have every d; = 8 — 1, and the largest
possible exponent. Thus,

Tmax = (0.1111)5 - 23
(27 '422 423427 25=22 4241405
= (7.5)10

2. What is the smallest positive element of this set?

The smallest positive number in the system will have only 1 nonzero significant digit, and
the minimum exponent:

Tmin = (0.1000)q - 273
— 94
= (0.0625)10

Definition 1. Absolute error, E4. Let p € R be a real number and let p* be an approximation
of p.
Ea=|p—p|

Definition 2. Relative error, Er. Let p € R be a real number and let p* be an approximation
of p.

_ *
Bp= PP
Pl

Let fl(xz) be the floating point representation associate with = € R.
Then x — fl(x) is roundoff error.

Example 5:

m = 3.14159265358797 - - -
= (11.00100100001 - - -)2

1. For the system discussed earlier, with 8 = 2,n = 4, M = 3, the representation of w is
rounded to

fi(r) = (0.1101)3 - 2% = (3.25)10.
This is the closest floating point number to 7 in that system.

2. In reality, with n = 52, the roundoff error in fl(7) is approximately 2752 ~ 10715,
A

The numbers that define a floating point system are determined by the hardware and software
you use (loosely, your “machine”).

Definition 3. Machine precision. The largest relative gap between floating point numbers is
defined as a machine unit, u, and is given by

See page 36 for the derivation of this quantity.
2.3.1 Floating point arithmetic
Text: section 1.4
Assumption 4. For all x € R, there is an € with |e| < u such that
flz) = z(1 +€).

Thus, the difference between any real number and its floating point representation is always less
than machine precision, in relative terms, i.e.,

|z — fi(x)]| < zu.

Definition 5. “Big O” notation. To say that f(h) = O(g(h)) implies proportionality and a
limit. If f(h) and g(h) are two functions of h, then

f(h) =0(g(h)) ash—0
implies that there exists a constant C such that
|f(h)] < Clg(h)| for all h sufficiently small.

The interpretation is that f(h) decays to zero at least as fast as g(h) as h — 0.

Question 7: How do roundoff errors behave under basic arithmetic operations (addition, sub-
traction, multiplication, division)?

1. Is fi(z) - i(y) = 2y(1 + €) for some |e| < u?
fi(z) - fi(y) = 2(1 + ex)y(1 + €)
=2y(1 + €p + €y + €2€y)

We define €, = €, + €, and note that since both €, and ¢, are very small, €€, is much
smaller. Thus,
fi(x) - A(y) = 2y(1 + €zy) + O(e?) as e — 0.

2. Is fi(z) + fl(y) = (z + y)(1 + €) for some |e| < u?

fli(z) +fl(y) = (1 4+ €x) + y(1 + €)
=T+ xep + Y+ yey

Tey + Y€y
(y)(pp)

Beware!

e Although we may assume that €, and ¢, are small, xe, and ye, might not be.
e Further more, if + y ~ 0, the denominator becomes unbounded, and fi(z) + fl(y)
may not be close to x + y at all!

A

Example 6: Consider a 4 decimal digit floating point system with = 0.1234 and y = —0.1233.
Then
z +y = 0.0001 = (0.1000)10 - 1073,

This result has only 1 significant digit. This is known as cancellation error.

Example 7: Quadratic formula, page 45.

—b+ Vb? — dac
2a

0222 — 47912+ 6 =0 = = = 239.4247,0.1253 : Matlab

ar’+br+c=0 = =

Now suppose we use 4 decimal digit arithmetic.

47.91 + 1/47.912 = 4(0.2)6 47.91+ /2205 — 48 47.91 + /2290
T = = —

2(0.2) 0.4 0.4
4791 +47.85 95.76
+ = = 239.4 : all 4 digits are correct
479144785 0.4 0-4
=1 -
4791 —47.85 0.06
0 =04 - 0.15 : only 1 digit is correct

The problem is due to loss of significance in the subtraction 47.91 — 47.85. One remedy is to
use higher precision arithmetic (Matlab), but another option is to reformulate the arithmetic.

 —b— Vb —dac —b+ Vb —4dac b — (b* — dac) 2¢

xr =

2a b+ VB2 —dac 2a(—b+ Vb% —4dac) —b+ Vb? — dac

B 2.6 12
4791 +47.85 95.76

= 0.1253 : now all 4 digits are correct

3 Finite differences
Text: section 6.2

Recall : We have discussed roundoff error due to floating point representations and floating
point arithmetic— each of these will appear when we use a computer to evaluate a function.

Question 8: How do we evaluate derivatives of functions?

Idea : Start with the definition of a derivative...

Fe) — 1 L) = @)

h—0 h

)

then approximate for some step size h > 0

iy o ERZIE iy,)

Graphically, we are approximating the slope of the tangent line to f(x) with the slope of the
secant line between f(z) and f(z + h).

0 3 O Ui Wi

— = =
N = O ©

Question 9: How accurate should we expect (2) to be?

Taylor series analysis : Recall:

£(#) = (@) + £(@)(z —) + 3" @)z —) + ¢ f (@) —a)f + -

We write (3) in an equivalent form. Replace x with x + h and replace a with z. Then z —a = h

in (3) and

Floh) = F@)+ F@h+ 37 (@ + " (@0)hd + -

— f/(l‘) _ f(x_‘_h)_f(x)_@f//(x)_thf///(x)_

S/ h 2 6

exact value ; .)
approximation truncation error

Thus, the error in our approximation (2) is proportional to h, since

ey - TEIRZIE Dy o),

3)

and we say that D, f(z) is a first order approximation of f'(x), since D, f(z) = f'(x) + O(h).

Thursday, 9/5/13

Example 8: If f(z) = e”, 2z =1, then f/(1) = e = 2.71828... is the exact value.

h Dif | f(x)=Dif | (f'(x) —Dif)/h
0.1 2.8588 -0.1406 -1.4056
0.05 2.7874 -0.0691 -1.3821
0.025 2.7525 -0.0343 -1.3705
0.0125 2.7353 -0.0171 -1.3648
\J 1) 3
0 e 0 -5 =—3/"(1)

Beware! In practice something unexpected happens when h is very small.

A

clear;
%% Forward difference demonstration
exact_value = exp(1);
tic
for j=1:65
h(j) = 1/2°);
computed_value = (exp(1+h(j)) — exp(1))/h(j);
error(j) = abs(exact_value — computed_value);
end

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

figure (1); clf;

plot (h,error ,h,error,’o’, LineWidth’,2,’MarkerSize’ ,12);
set (gca, 'FontSize’ ,18);

xlabel (’step size, h’);

ylabel(’error’);

title (’Forward Difference error vs. step size’);

figure (2); clf;

loglog(h,error ,h,error,’o’, ’LineWidth’,2,’MarkerSize’ ,12);
set (gca, 'FontSize’ ,18);

xlabel (’step size, h’);

ylabel(’error’);

title (’Forward Difference error vs. step size’);

toc

saveas (1, ' fwdDiff_linearPlot.png’);
saveas (2, ' fwdDiff logPlot.png’);

Forward Difference error vs. step size

3 .

25

1.5+

error

0 0.1 0.2 0.3 0.4
step size, h

0.5

Forward Difference error vs. step size
10 l . :

error
o

10-10 1 1 1
-15 -5 0

107 10 107" 10 10
step size, h

Note : If error ~ ChP, then log(error) = log C 4 plog h, i.e. the slope of the data on a log-log
plot gives the order of convergence.

A
Question 10: Why does error increase for very small h (the left side of the plot)?

e D, f(x) has two sources of error: truncation error due to not using the entire Taylor series,
and roundoff error due to finite precision arithmetic.

e Truncation error, we have shown, is O(h), and roundoff error is O(e/h), where € ~ 10717
in Matlab.

e The total error is therefore O(h)+O(e/h), hence for large h (relative to €) truncation error
dominates the computation, but for small h, roundoff error is dominant.

A

Note : Other finite difference approximations of first derivatives are possible, for example,

flz) — flx—h)

P :
fle+h) - flx—h)
2h

e Backward difference: D_f(x) =

e Centered difference: Dy f(z) = (homework).

4 Matlab Intro

basic data type = complex matrix, double precision
e Loops

e preallocation

the colon operator

elemental vs. array operations

transpose

clear, mod, if, elseif, end

