
Tu: 9/3/13 Math 471, Fall 2013, Section 001 Lecture 1

1 Course intro

Notes :

• Take attendance.

• Instructor introduction.

• Handout : Course description.

– Note the exam days (and don’t be absent).

– Bookmark the course webpage.

– Matlab: We’ll use it but I won’t have time to teach coding– note the o�ce hours.

– Tests : non-programmable calculators only, plus one-page of notes (one-sided for
midterm, two-sided for final).

• Assigned reading : Bradie, chapter 1.

• Not all topics from the text will be covered in class, some homework problems / test
problems may come from material in the text or course webpage, even if they aren’t
explicitly covered in class.

Numerical methods

• How to solve equations with computers

• Building blocks of all computer models

• How to use them – we cannot always trust a computed result

• “Black box” syndrome: Modelers beware!

The following graphic depicts 9 di↵erent models’ solutions to the linear advection equation in
spherical geometry. The models are all either operational climate models.

2 Representing numbers

Question 1:

• What representations are exact?

• Which are approximate?

4

2.1 Symbolic representation

Example 1:

• ⇡

• e

• 2

3

•
p

2

4

2.2 Numerical representation

We use a positional system. The position of each digit relative to the point guides our under-
standing of the number.

x = ± (d
n

d
n�1

d
n�2

· · · d
1

d
0

.d�1

d�2

· · ·)
�

= ±
�
d
n

�n + d
n�1

�n�1 + · · · + d
0

�0 + d�1

��1 + d�2

��2 + · · ·
�

� = base,

d
i

= digits, 0 d
i

 � � 1 for all i

Other common bases are � = 8 and � = 16; perhaps � = 60?

Example 2: � = 10 : decimal

• (2013)
10

= 2 · 103 + 0 · 102 + 1 · 101 + 3 · 100

• (0.360)
10

= 3 · 10�1 + 6 · 10�2 + 0 · 10�3

4

Example 3: � = 2 : binary

• (101011.01)
2

= 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 + 0 · 2�1 + 1 · 2�2

= 32 + 8 + 2 + 1 + 0.25 = (43.25)
10

= 4 · 101 + 3 · 100 + 2 · 10�1 + 5 · 10�2

4

Question 2: Are the above numerical representations exact?

4

Question 3: Why do humans prefer the decimal representation? Why would binary make
sense for computers?

4

2.3 Floating point representation

Text: section 1.3

• Computers use a ‘floating point representation’ for real numbers.

• Constant number of significant digits.

Unlike the previous two sections, floating point representations presume a finite number of digits,
and hence necessarily approximate irrational numbers and even some rationals.

Question 4: Is a floating point representation exact?

4

Question 5: Why would this be necessary in a typical computer, but not necessarily so for a
human?

4

A floating point number is represented as

x = (0.d
1

d
2

· · · d
n

)
�

· �e d
1

6= 0 (1)

where n is the number of significant digits, � is the base, and e is the exponent. The string of
digits, d

1

d
2

· · · d
n

is called the mantissa.
A floating point number system is defined by n, � and M , where M is an integer such that
�M e M .
In IEEE double precision (the standard for most scientific computing), � = 2, n = 53, and
M = 1023. Numbers are stored across 64 bits (bit = binary digit). 1 bit = sign of mantissa,
1 bit = sign of exponent, the mantissa is stored across 52 bits, which leaves 10 bits for the
exponent.

Notes

• Floating point number systems are discrete (finite and not continuous) sets

• They have a maximum element and a minimum element

• They contain the number zero, and have a smallest positive element and a largest negative
element

Question 6: What does multiplication by �e do in (1)?

4

Example 4: Consider the floating point system defined by � = 2, n = 4, and M = 3.

1. What is the largest element in this set?

The largest element in any floating point system will have every d
i

= ��1, and the largest
possible exponent. Thus,

x
max

= (0.1111)
2

· 23

= (2�1 + 2�2 + 2�3 + 2�4) · 23 = 22 + 2 + 1 + 0.5

= (7.5)
10

2. What is the smallest positive element of this set?

The smallest positive number in the system will have only 1 nonzero significant digit, and
the minimum exponent:

x
min

= (0.1000)
2

· 2�3

= 2�4

= (0.0625)
10

4

Definition 1. Absolute error, E
A

. Let p 2 R be a real number and let p⇤ be an approximation
of p.

E
A

= |p � p⇤|

Definition 2. Relative error, E
R

. Let p 2 R be a real number and let p⇤ be an approximation
of p.

E
R

=
|p � p⇤|

|p|

Let fl(x) be the floating point representation associate with x 2 R.
Then x � fl(x) is roundo↵ error.

Example 5:

⇡ = 3.14159265358797 · · ·
= (11.00100100001 · · ·)

2

1. For the system discussed earlier, with � = 2, n = 4, M = 3, the representation of ⇡ is
rounded to

fl(⇡) = (0.1101)
2

· 22 = (3.25)
10

.

This is the closest floating point number to ⇡ in that system.

2. In reality, with n = 52, the roundo↵ error in fl(⇡) is approximately 2�52 ⇡ 10�15.

4

The numbers that define a floating point system are determined by the hardware and software
you use (loosely, your “machine”).

Definition 3. Machine precision. The largest relative gap between floating point numbers is
defined as a machine unit, u, and is given by

u =
1

2
�1�n.

See page 36 for the derivation of this quantity.

2.3.1 Floating point arithmetic

Text: section 1.4

Assumption 4. For all x 2 R, there is an ✏ with |✏| < u such that

fl(x) = x(1 + ✏).

Thus, the di↵erence between any real number and its floating point representation is always less
than machine precision, in relative terms, i.e.,

|x � fl(x)| < xu.

Definition 5. “Big O” notation. To say that f(h) = O(g(h)) implies proportionality and a
limit. If f(h) and g(h) are two functions of h, then

f(h) = O
�
g(h)

�
as h ! 0

implies that there exists a constant C such that

|f(h)| < C |g(h)| for all h su�ciently small.

The interpretation is that f(h) decays to zero at least as fast as g(h) as h ! 0.

Question 7: How do roundo↵ errors behave under basic arithmetic operations (addition, sub-
traction, multiplication, division)?

1. Is fl(x) · fl(y) = xy(1 + ✏) for some |✏| < u?

fl(x) · fl(y) = x(1 + ✏
x

)y(1 + ✏
y

)

= xy(1 + ✏
x

+ ✏
y

+ ✏
x

✏
y

)

We define ✏
xy

= ✏
x

+ ✏
y

and note that since both ✏
x

and ✏
y

are very small, ✏
x

✏
y

is much
smaller. Thus,

fl(x) · fl(y) = xy(1 + ✏
xy

) + O(✏2) as ✏ ! 0.

2. Is fl(x) + fl(y) = (x + y)(1 + ✏) for some |✏| < u?

fl(x) + fl(y) = x(1 + ✏
x

) + y(1 + ✏
y

)

= x + x✏
x

+ y + y✏
y

= (x + y)

✓
1 +

x✏
x

+ y✏
y

x + y

◆

Beware!

• Although we may assume that ✏
x

and ✏
y

are small, x✏
x

and y✏
y

might not be.

• Further more, if x + y ⇡ 0, the denominator becomes unbounded, and fl(x) + fl(y)
may not be close to x + y at all!

4

Example 6: Consider a 4 decimal digit floating point system with x = 0.1234 and y = �0.1233.
Then

x + y = 0.0001 = (0.1000)
10

· 10�3.

This result has only 1 significant digit. This is known as cancellation error.

4

Example 7: Quadratic formula, page 45.

ax2 + bx + c = 0) x =
�b ±

p
b2 � 4ac

2a

0.2x2 � 47.91x + 6 = 0) x = 239.4247, 0.1253 : Matlab

Now suppose we use 4 decimal digit arithmetic.

x =
47.91 ±

p
47.912 � 4(0.2)6

2(0.2)
=

47.91 ±
p

2295 � 4.8

0.4
=

47.91 ±
p

2290

0.4

=
47.91 ± 47.85

0.4
=

8
>>><

>>>:

47.91 + 47.85

0.4
=

95.76

0.4
= 239.4 : all 4 digits are correct

47.91 � 47.85

0.4
=

0.06

0.4
= 0.15 : only 1 digit is correct

The problem is due to loss of significance in the subtraction 47.91 � 47.85. One remedy is to
use higher precision arithmetic (Matlab), but another option is to reformulate the arithmetic.

x =
�b �

p
b2 � 4ac

2a
· �b +

p
b2 � 4ac

�b +
p

b2 � 4ac
=

b2 � (b2 � 4ac)

2a(�b +
p

b2 � 4ac)
=

2c

�b +
p

b2 � 4ac

=
2 · 6

47.91 + 47.85
=

12

95.76
= 0.1253 : now all 4 digits are correct

4

3 Finite di↵erences

Text: section 6.2

Recall : We have discussed roundo↵ error due to floating point representations and floating
point arithmetic– each of these will appear when we use a computer to evaluate a function.

Question 8: How do we evaluate derivatives of functions?

Idea : Start with the definition of a derivative...

f 0(x) = lim
h!0

f(x + h) � f(x)

h
,

then approximate for some step size h > 0

f 0(x) ⇡ f(x + h) � f(x)

h
= D

+

f(x). (2)

Graphically, we are approximating the slope of the tangent line to f(x) with the slope of the
secant line between f(x) and f(x + h).

x x + h

4

Question 9: How accurate should we expect (2) to be?

Taylor series analysis : Recall:

f(x) = f(a) + f 0(a)(x � a) +
1

2
f 00(a)(x � a)2 +

1

6
f 000(a)(x � a)3 + · · · (3)

We write (3) in an equivalent form. Replace x with x + h and replace a with x. Then x� a = h
in (3) and

f(x + h) = f(x) + f 0(x)h +
1

2
f 00(x)h2 +

1

6
f 000(x)h3 + · · ·

=) f 0(x)| {z }
exact value

=
f(x + h) � f(x)

h| {z }
approximation

� h

2
f 00(x) � 1

6
h2f 000(x) � · · ·

| {z }
truncation error

Thus, the error in our approximation (2) is proportional to h, since

f 0(x) � f(x + h) � f(x)

h
= �h

2
f 00(x) + O(h2),

and we say that D
+

f(x) is a first order approximation of f 0(x), since D
+

f(x) = f 0(x) + O(h).

4

Thursday, 9/5/13

Example 8: If f(x) = ex, x = 1, then f 0(1) = e = 2.71828 . . . is the exact value.

h D
+

f f 0(x) � D
+

f (f 0(x) � D
+

f)/h

0.1 2.8588 -0.1406 -1.4056
0.05 2.7874 -0.0691 -1.3821
0.025 2.7525 -0.0343 -1.3705
0.0125 2.7353 -0.0171 -1.3648

#
0 e 0 � e

2

= �1

2

f 00(1)

Beware! In practice something unexpected happens when h is very small.

1 clear ;
2 %% Forward d i f f e r e n c e demonstrat ion
3 exac t va lue = exp (1) ;
4
5 t ic

6
7 for j =1:65
8 h(j) = 1/2ˆ j ;
9 computed value = (exp(1+h(j)) � exp (1)) / h(j) ;

10 error (j) = abs (exac t va lue � computed value) ;
11 end

12

13 f igure (1) ; c l f ;
14 plot (h , error , h , error , ’ o ’ , ’ LineWidth ’ ,2 , ’ MarkerSize ’ , 1 2) ;
15 set (gca , ’ FontSize ’ , 1 8) ;
16 xlabel (’ s t ep s i z e , h ’) ;
17 ylabel (’ e r r o r ’) ;
18 t i t l e (’ Forward D i f f e r e n c e e r r o r vs . s t ep s i z e ’) ;
19
20 f igure (2) ; c l f ;
21 loglog (h , error , h , error , ’ o ’ , ’ LineWidth ’ ,2 , ’ MarkerSize ’ , 1 2) ;
22 set (gca , ’ FontSize ’ , 1 8) ;
23 xlabel (’ s t ep s i z e , h ’) ;
24 ylabel (’ e r r o r ’) ;
25 t i t l e (’ Forward D i f f e r e n c e e r r o r vs . s t ep s i z e ’) ;
26
27 toc

28
29 saveas (1 , ’ fwdD i f f l i n e a rP l o t . png ’) ;
30 saveas (2 , ’ fwdD i f f l o gP l o t . png ’) ;

Note : If error ⇡ Chp, then log(error) = log C + p log h, i.e. the slope of the data on a log-log
plot gives the order of convergence.

4

Question 10: Why does error increase for very small h (the left side of the plot)?

• D
+

f(x) has two sources of error: truncation error due to not using the entire Taylor series,
and roundo↵ error due to finite precision arithmetic.

• Truncation error, we have shown, is O(h), and roundo↵ error is O(✏/h), where ✏ ⇡ 10�15

in Matlab.

• The total error is therefore O(h)+O(✏/h), hence for large h (relative to ✏) truncation error
dominates the computation, but for small h, roundo↵ error is dominant.

4

Note : Other finite di↵erence approximations of first derivatives are possible, for example,

• Backward di↵erence: D�f(x) =
f(x) � f(x � h)

h
.

• Centered di↵erence: D
0

f(x) =
f(x + h) � f(x � h)

2h
(homework).

4 Matlab Intro

basic data type = complex matrix, double precision

• Loops

• preallocation

• the colon operator

• elemental vs. array operations

• transpose

• clear, mod, if, elseif, end

