
Thursday, 10/29/13 Math 471, Fall 2013, Section 001 Topic 6

1 Interpolation and approximation

The problem of data fitting (i.e., interpolation or approximation) arises in all aspects of science
and engineering. The most obvious example of this problem arising in an application occurs
with measured data: suppose you have a set of discrete measurements of a function, but you
require that function’s value at a point that is not one of the measurement locations.

But you can find the interpolation/approximation problem even in contexts where there are no
measurements. Suppose you have a model that uses a mesh (like a finite difference method),
but you (or somebody else) needs information from your model at locations that don’t coincide
with your mesh’s gridpoints – you will have to interpolate or approximate.
In general, we face the choice of the following two problems in almost everything we do:

The interpolation problem. Given a set of locations {xj}, j = 1, . . . , n in Rd and a corre-
sponding set of function values fj , we seek a (continuous) function Pf such that

Pf (xj) = fj , j = 1, . . . , n.

The approximation problem. Given a set of locations {xj}, j = 1, . . . , n in Rd and a
corresponding set of function values fj , we seek a (continuous) function Pf such that

Pf (xj) ≈ fj , j = 1, . . . , n.

Question 1: Why would approximation be sometimes more desirable than interpolation?

There are more conditions we may demand of the interpolating or approximating function; for
example, we may wish that it have a minimum number of derivatives, in addition to being
continuous.
It is convenient to pose this problem as needing to find coefficients that represent Pf as a linear
combination of a set of basis functions,

Pf (x) =

m∑
k=1

ckBk(x)

where Bk(x) are the basis functions.
Solving the interpolation problem then reduces to solving the linear system of equations

Ac = f,

for the vector c, the vector of coefficients. The entries of the interpolation matrix A are given
by Ajk = Bk(xj) and the right-hand side vector f are the function values fj = f(xj), which are
given from the data.

Question 2: What about other applications, such as approximating integrals and derivatives?
In other words, if f(x) ≈ Pf (x),

1



• Is
∫ b
a f(x) dx ≈

∫ b
a Pf (x) dx?

• Is f ′(x) ≈ P ′f (x)?

Let’s start simple, and work with Bk(x) that are polynomials.

2 Polynomial interpolation

Recall: a polynomial of degree n can be written in the form pn(x) = a0+a1x+a2x
2+ · · ·+anx

n.
Note: there are other equivalent forms to write polynomials, as we shall see.

Theorem 1 (Weirstrauss approximation theorem). Let f(x) be continuous on the closed interval
[a, b]. Then for any ε > 0 there exists a polynomial p(x) such that max

a≤x≤b
|f(x)− p(x)| < ε.

Proof. Math 451.
The implication of this theorem is that any continuous function can be approximated to arbitrary
accuracy by polynomials.

2.1 Taylor polynomials

Definition 2. Given f(x) and a point x = a, the Taylor polynomial of degree n about x = a is

pn(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + · · ·+ 1

n!
f (n)(a)(x− a)n.

The Taylor polynomial satisfies the following conditions:

1. pn(a) = f(a), p′n(a) = f ′(a), . . . , p
(n)
n (a) = f (n)(a).

2. f(x) = pn(x) + rn(x) : rn(x) = remainder , error

3. rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t) dt =

1

(n+ 1)!
f (n+1)(ξ)(x−a)n+1 for some point ξ ∈ [a, a+x].

⇒ |f(x)− pn(x)| ≤ 1

(n+ 1)!
max
a≤t≤x

∣∣∣f (n+1)(t)
∣∣∣ · |x− a|n+1 : error bound

Taylor polynomials are may be written as pn(x) =
∑n

k=1 ck(x − a)k, like the above form; this
would imply an expansion using the basis Bk(x) = (x− a)k, and the coefficients ck = 1

n!f
(k)(a).

Note that the Taylor polynomials are an approximating method; the do not satisfy the interpo-
lation matrix.

Example 1: Find pn(x) about a = 0 for f(x) =
1

1 + 25x2
.

Direct approach : find formulas for all n derivatives, plug in x = a.
Better idea : use geometric series to avoid lots of differentiation.

recall : 1 + r + r2 + r3 + · · · =

{
1

1−r |r| < 1

diverges |r| ≥ 1

1

1 + 25x2
=

1

1− (−25x2)︸ ︷︷ ︸
r=−25x2

= 1 + (−25x2) + (−25x2)2 + (−25x2)3 + · · ·
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Note:∣∣−25x2
∣∣ < 1⇒ |x| < 1

5
⇒ lim

n→∞
pn(x) = f(x) for −1

5 < x < 1
5 for |x| ≥ 1

5 , lim
n→∞

pn(x) diverges

Explanation : f(x) has singularities at x = ±1
5 i in the complex plane (Math 555)

Take a look at pn and f(x):

clear ;
%% Taylor po lynomia l s

x = −1 :0 . 001 :1 ;

f = 1 . / ( 1 + 25∗x . ˆ 2 ) ;

p0 = ones ( s ize ( x ) ) ;

p2 = 1−25∗x . ˆ 2 ;

p4 = p2 + 625∗x . ˆ 4 ;

p6 = p4 − 15625∗x . ˆ 6 ;

f igure ( 1 ) ; c l f ;
subplot ( 2 , 2 , 1 ) ;
plot (x , f , ’b− ’ , x , p0 , ’ r−− ’ ) ;
set (gca , ’ FontSize ’ , 1 6 ) ;
t i t l e ( ’ p 0 ( x ) = 1 ’ ) ;
xl im ( [ −1 , 1 ] ) ;
yl im ( [ − 0 . 5 , 1 . 5 ] ) ;

subplot ( 2 , 2 , 2 ) ;
plot (x , f , ’b− ’ , x , p2 , ’ r−− ’ ) ;
set (gca , ’ FontSize ’ , 1 6 ) ;
t i t l e ( ’ p 2 ( x ) = 1 − 25xˆ2 ’ ) ;
xl im ( [ −1 , 1 ] ) ;
yl im ( [ − 0 . 5 , 1 . 5 ] ) ;

subplot ( 2 , 2 , 3 ) ;
plot (x , f , ’b− ’ , x , p4 , ’ r−− ’ ) ;
set (gca , ’ FontSize ’ , 1 6 ) ;
t i t l e ( ’ p 2 ( x ) = 1 − 25xˆ2 + 625xˆ4 ’ ) ;
xl im ( [ −1 , 1 ] ) ;
yl im ( [ − 0 . 5 , 1 . 5 ] ) ;

subplot ( 2 , 2 , 4 ) ;
plot (x , f , ’b− ’ , x , p6 , ’ r−− ’ ) ;
set (gca , ’ FontSize ’ , 1 6 ) ;
t i t l e ( ’ p 2 ( x ) = 1 − 25xˆ2 + 625xˆ4 − 15625xˆ6 ’ ) ;
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xlim ( [ −1 , 1 ] ) ;
yl im ( [ − 0 . 5 , 1 . 5 ] ) ;

saveas (1 , ’ t ay l o rPo ly s . png ’ ) ;

4

Taylor polynomials are good approximations when f is sufficiently differentiable and x is close
to a.
What about other methods of approximation?

2.2 General polynomial interpolation

Text : section 5.2

Theorem 3. Let x0, x1, . . . , xn be n+ 1 distinct points and f0, f1, . . . , fn be n+ 1 corresponding
data values of a function f(x). Then there exists a unique polynomial pn(x) of degree ≤ n such
that pn(x) interpolates f , i.e., pn(xi) = f(xi) for each i = 0, . . . , n+ 1.

Proof. 1. We’ll prove the existence of this polynomial soon.

2. Uniqueness is guaranteed by the Fundamental Theorem of Algebra (Math 412).
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Example 2:

Case n = 2⇒ x0, x1.

Goal : Find a linear polynomial p1(x) = a0 + a1x such that p1(x0) = f0 and p1(x1) = f1. Easy

to show that a0 =
x1f0 − x0f1
x1 − x0

and a1 =
f1 − f0
x1 − x0

.

Then pn(x) =
x1f0 − x0f1
x1 − x0

+
f1 − f0
x1 − x0

x

(
?

d
?

W
d
�
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Question 3:

1. How can we construct pn(x) for larger n?

2. Is there an efficient way to evaluate pn(x) for x 6= xi?

3. How large is the error |pn(x)− f(x)| for x 6= xi?

Definition 4. The kth Lagrange polynomial is

Lk(x) =

n∏
i=0
i 6=k

(
x− xi
xk − xi

)
, k = 0, . . . , n

is a polynomial of degree n associated with data point k.

Example 3: n = 2, x0 = −1, x1 = 0, x2 = 1

L0(x) =
2∏
i=1

(
x− xi
xk − xi

)
=

(
x− x1
x0 − x1

)
·
(
x− x2
x0 − x2

)
=

(
x− 0

−1− 0

)
·
(
x− 1

−1− 1

)
=

1

2
x2 − 1

2
x

L1(x) =

2∏
i=0
i 6=1

(
x− xi
xk − xi

)
=

(
x− x0
x1 − x0

)
·
(
x− x2
x1 − x2

)
=

(
x− (−1)

0− (−1)

)
·
(
x− 1

0− 1

)
= −x2 + 1

L1(x) =
1∏
i=0

(
x− xi
xk − xi

)
=

(
x− x0
x2 − x0

)
·
(
x− x1
x2 − x1

)
=

(
x− (−1)

1− (−1)

)
·
(
x− 0

1− 0

)
=

1

2
x2 +

1

2
x
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4

Properties of Lagrange polynomials:

1. The degree of each Lk is n

2. Lk(xi) =

{
1 if i = k

0 if i 6= k

Interpolating using the Lagrange polynomials:

Let f(x) be given. The Lagrange form of the interpolating polynomial is

pn(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x) + · · ·+ f(xn)Ln(x) =

n∑
k=0

f(xk)Lk(x)

⇒ Using the basis of Lagrange polynomials, the coefficients are the data values.

Example 4: f(x) =
1

1 + 25x2
, x0 = −1, x1 = 0 x2 = 1

p2(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)

p2(x) =
1

26
·
(

1

2
x2 − 1

2
x

)
+ 1 ·

(
x2 − 1

)
+

1

26

(
1

2
x2 +

1

2
x

)
= −25

26
x2 + 1
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Notes:

• The 2nd degree interpolating polynomial here is different than the 2nd degree Taylor
polynomial centered at x = 0.

• This polynomial interpolates the data at the given points xi.

• The approximation near x = 0 is much worse than the Taylor polynomial, but elsewhere
in the domain this approximation is much better.

4

Advantages of the Lagrange form are :

• They are helpful in theory, for example, to establish the existence of pn(x).

• They are helpful conceptually: the data fj are separated from the locations xi.

Disadvantages of the Lagrange form are :

• It is expensive to evaluate pn(x) for x 6= xi using this form (for small n, this is not a
problem)

• Changing the mesh, for example, by adding an additional point xn+1 means that all Lk(x)
must be recalculated.
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2.3 Polynomial interpolation : Newton’s form

Recall: A unique polynomial of degree n exists that interpolates data at n+ 1 locations,

pn(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

We have seen that this form of the polynomial is subject to cancellation error (hw 1). Alterna-
tively, we have proposed the Lagrange form of pn(x), given by the basis of Lagrange polynomials.

We saw that Lagrange polynomials are useful theoretically (for proving existence of pn, for
example), but can be costly to use for computing when n is large. In this section we look for a
more efficient means of constructing and evaluating pn(x).

Text : section 5.3

Definition 5. The Newton form of an interpolating polynomial pn(x) that interpolates a func-
tion f is

pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · · cn(x− x0) · · · (x− xn−1).

In this case the basis functions Bk(x), k = 0, 1, . . . , n are

Bk(x) =

k−1∏
i=0

(x− xi).

Example 5: n = 1, x0, x1

p1(x) = f(x0)

(
x− x1
x0 − x1

)
+ f(x1)

(
x− x0
x1 − x0

)
: Lagrange form

= f(x0) +

(
f(x1)− f(x0)

x1 − x0

)
(x− x0) : Newton form

4

For n ≥ 2, we need a method to compute a0, a1, . . . , an.

1. Solve the interpolating matrix. We may write pn(x) =

n∑
k=0

ckBk(x) and impose the inter-

polating condition pn(xi) = f(xi) for i = 0, 1 . . . , n to arrive at the linear system
B0(x0) B1(x0) · · · Bn(x0)
B0(x1) B1(x1) . . . Bn(x1)

...
. . .

...
...

. . .
...

B0(xn) . . . . . . Bn(xn)




c0
c1
...
...
cn

 =


f0
f1
...
...
fn


The definition of the Newton form of pn(x) makes this matrix lower-triangular, which can
be solved by forward substitution.

i = 0 : p0(x0) = c0 = f0
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i = 1 : p1(x1) = c0︸︷︷︸
p0(x1)

+c1(x1 − x0) = f1 ⇒ c1 =
f1 − p0(x1)
x1 − x0

i = 2 : p2(x1) = c0 + c1(x− x0)︸ ︷︷ ︸
p1(x)

+c2(x− x0)(x− x1) = f2 ⇒ c2 =
f2 − p1(x2)

(x2 − x0)(x2 − x1)

...

i = n : pn(xn) = pn−1(xn)+cn(x−x0) · · · (x−xn−1) = fn ⇒ cn =
fn − pn−1(xn)

(xn − x0)(xn − x1) · · · (xn − xn−1)

Here we have defined polynomials p0(x) as the polynomial that interpolates f at x = x0,
and p1(x) as the polynomial that interpolates f at x = 0 and x = x1... Then pi(x) is the
polynomial that interpolates f at all x = xk for k = 0, 1, . . . , i.

2. Divided differences.

Definition 6. The Newton form of the interpolating polynomial may be given by divided differences,
where the kth divided difference between points xk and xj with k + j ≤ n is

f [xj , xj+1, xj+2, . . . , xj+k] =
f [xj+1, . . . , xj+k]− f [xj , . . . , xj+k−1]

xj+k − xj

Thus, each divided difference is computed from the divided differences that precede it,
starting with f [x0] = f0.

Theorem 7. The coefficients of the Newton form of the interpolating polynomial are given by
the divided difference formulas

c0 = f [x0], c1 = f [x0, x1], c2 = f [x0, x1, x2], . . .

Proof. Let pn−1(x) interpolate f(x) at the first n− 1 points, i.e., at x = x0, x1, x2, . . . , xn−1.

Let qn−1(x) interpolate f(x) at the next n− 1 points, i.e., at x = x1, x2, . . . , xn.

Then both pn−1(x) and qn−1(x) have degree ≤ n− 1.

Define g(x) =

(
x− x0
xn − x0

)
qn−1(x) +

(
xn − x
xn − x0

)
pn−1(x).

Then deg g ≤ n and g(x) interpolates f at x = x0 and x = xn:

g(x0) = pn−1(x0) = f0

g(xn) = qn−1(xn) = fn

For i = 1 : n− 1, g(xi) =

(
xi − x0
xn − x0

)
qn−1(xi) +

(
xn − xi
xn − x0

)
pn−1(xi)

⇒ g(xi) = fi

(
xi − x0
xn − x0

)
+ fi

(
xn − xi
xn − x0

)
= fi

Thus, g(x) is a degree ≤ n polynomial that interpolates f at points xi for i = 0, . . . , n⇒ g(x) =
pn(x).

9



Note that pn−1(x) and qn−1(x) are equal to each other at xi for i = 1 : n − 1. Starting from
n = 2, we can set the coefficients of xn from these two polynomials equal to each other to find
that

f [x1, . . . , xn]

xn − x0︸ ︷︷ ︸−
f [x0, . . . , xn−1]

xn − x0︸ ︷︷ ︸ = f [x0, x1, . . . , xn]

Hence, we can write the Newton form of pn(x) as

pn(x) = f [x0] + f [x0, x1](x− x0)+
f [x0, x1, x2](x− x0)(x− x1) + f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2) + · · ·

+ f [x0, . . . , xn](x− x0) · · · (x− xn−1) (1)

We can organize the computation of divided differences into a table:

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2] . . .
f [x1, x2]

x2 f [x2] f [x1, x2, x3] . . .

f [x2, x3]
...

x3 f [x3]
...

...
...

This table builds the interpolating polynomial p(x) one term at a time and interpolates f at one
additional point. Each intermediate step k ≤ n interpolates the first k + 1 points. Note that
adding a point does not change the previous basis functions (unlike the Lagrange form of the
interpolating polynomial).

Example 6: n = 2, x0 = −1, x1 = 0, x2 = 1, f(x) =
1

1 + 25x2

0x

1x

2x

]1x[f

]2x[f

]2;x1x[f

¤
]0x[f

¤
]1;x0x[f

¤
]2;x1;x0x[f
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{ 26
|
25

26
|
25

26
|
25

{

1

26
|
11

0

26
|
1

{1

]¢¢¢[f]¢¢[f]¢[fix

p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

p2(x) =
1

26
+

25

26
(x+ 1)− 25

26
x(x+ 1)

4

2.3.1 Operation counts

evaluation of pn(x)

p2(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) : Newton form, 3 mults.

= a0 + (x− x0) (a1 + a2(x− x1)) : Nested form, 2 mults.
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general case

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0) · · · (x− xn−1) : Newton form

pn(x) = a0 + (x− x0) (a1 + (x− x1)(a2 + (x− x2)(a2 + · · ·+ an(x− xn))) · · · ) : nested form

Same number of additions. Multiplication count: Newton form = n(n−1)
2 , nested form = n

(cheap!).

Error in polynomial interpolation

Theorem 8. For a differentiable function f(x) and interpolation points x0 < x1 < · · · < xn,
the interpolating polynomial pn(x) satisfies, on the interval x0 ≤ x ≤ xn,

f(x) = pn(x) +
1

(n+ 1)!
f (n+1)(ξ)(x− x0)(x− x1) · · · (x− xn)

Proof. Omitted. Note that this resembles the error in Taylor series approximation.

Example 7: Error bound, n = 1. a ≤ x ≤ b ⇒ |f(x)− p1(x)| ≤ 1
8M |b− a|

2 , where M =

max
a≤x≤b

∣∣f ′′(x)
∣∣. (hw 6)

Return to example :
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We see that the polynomial does well near the center of the domain, but has very high error
near the boundaries. This problem does not get better with a more refined mesh (in fact, it gets
worse).

This is known as Runge’s phenomenon, and it is due to the fact that on the outer parts of an
interval, when using equidistant points, the polynomial interpolation problem is sometimes ill-
conditioned. Note, this ill-conditioning is a feature of the problem, not the numerical method.
Lookup Matlab’s polyfit and polyval tools.

Thursday, 11/7/13

2.4 Optimal points for interpolation

Text : section 5.4

Interpolation problem, part b: Suppose you know that you will have to use interpolation,
perhaps because the function you need to evaluate is not known or expensive to compute; where
should you place your mesh points?
Equivalently, suppose your lab only has enough funding to measure n data points over a domain
D ⊆ R3, where should you place your measurement devices to minimize interpolation error?
Consider two options for the interval x ∈ [−1, 1]:

1. uniform mesh : xi = −1 + ih, h = 2
n , i = 0 : n.
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2. Chebyshev points : xi = − cos θi, θi = iπn , i = 0 : n.

!

x

The cosine function concentrates grid points toward the endpoints of the interval.
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!1 0 1
!1.5

!1

!0.5

0

0.5

1

1.5
uniform points, n=4

!1 0 1
!1.5

!1

!0.5

0

0.5

1

1.5
Chebyshev points , n=4

!1 0 1
!1.5

!1

!0.5

0

0.5

1

1.5
uniform points , n=8

!1 0 1
!1.5

!1

!0.5

0

0.5

1

1.5
Chebyshev points , n=8

Notes:

• Interpolating on a set of Chebyshev points gives a good approximation over the whole
interval; uniform meshes only achieve good accuracy near the center of the interval.

• The Chebyshev points are roots of the Chebyshev polynomials, an important set of orthog-
onal polynomials. The points define the optimal locations for minimizing the L∞ error of
the interpolating polynomial over the interval x ∈ [a, b].

• They are a set of orthogonal polynomials. Another set are the Legendre polynomials,
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whose roots give the optimal points for minimizing the L2 norm of the polynomial pn(x).

3 Piecewise polynomial interpolation

We have seen that although unique, the polynomial pn(x) that interpolates a function f on n+1
data points may not be well conditioned. In situtations where we can control the interpolation
locations, we can use Chebyshev points or other special points to minimize interpolation error.
For cases where we do not have this flexibility, it is often more useful to use lower-degree
polynomials, perhaps even lots of them.
The interpolating polynomial pn(x) may not be a good approximation of f(x) on the whole
interval, so instead we may consider piecewise linear interpolation, denoted by q(x).

Text : section 5.5

Given f(x), a ≤ x ≤ b, a = x0 < x1 < x2 · · · < xn−1 < xn = b

q(x) =



f [x0] + f [x0, x1](x− x0), x0 ≤ x < x1
...

...

f [xi] + f [xi, xi+1](x− xi), xi ≤ x < xi+1

...
...

f [xn−1] + f [xn−1, xn](x− xn−1), xn−1 ≤ x ≤ xn

nx{1nx1x0x
ba

)x(f

Notes:

• q(x) is continuous, but not differentiable, at x = xi

• error : |f(x)− q(x)| ≤ 1

8
max
a≤x≤b

∣∣f ′′(x)
∣∣ ·max

i
|xi+1 − xi|2 : 2nd order accurate

• Piecewise interpolation is often referred to as a local method, as the function is locally
approximated by a line at each grid point.
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• Local polynomials of higher degree may also be used; a famous technique in fluid dynamics
and finite volume methods is known as the “Piecewise Parabolic Method,” or PPM.

3.1 cubic spline interpolation

Text : section 5.6

Definition 9. A cubic spline is a function s(x) that satisfies the following conditions.

1. For each subinterval, xi ≤ x ≤ xi+1, s(x) is a cubic polynomial.

2. s(x), s′(x), and s′′(x) are continuous at the interior points x1, . . . , xn−1.

Example 8: n = 2, x0 = −1, x1 = 0, x2 = 1.

s(x) =

{
0, −1 ≤ x ≤ 0

x3, 0 ≤ x ≤ 1

s′(x) =

{
0, −1 ≤ x ≤ 0

3x2, 0 ≤ x ≤ 1

s′′(x) =

{
0, −1 ≤ x ≤ 0

6x, 0 ≤ x ≤ 1

s(x) satisfies all conditions, hence s is a cubic spline.

4

cubic spline interpolation problem

Given f(x) and a = x0 < x1 < · · · < xn−1 < xn = b, find a cubic spline s(x) which interpolates
f(x) at the given points, i.e., s(xi) = f(xi) for i = 0 : n.

On each subinterval xi ≤ x ≤ xi+1, s(x) = si(x) = c0 + c1x+ c2x
2 + c3x

3 : 4 coefficients.

nx+1ix

)x(is

ix

)x({1is

{1ix0x

n+ 1 points ⇒ n intervals ⇒ 4n unknown coefficients

Interpolation conditions : ⇒ 2n equations : si−1(xi) = f(xi), si(xi) = f(xi)

Continuity of s′(x), s′′(x) at interior points⇒ 2(n−1) equations : s′i−1(xi) = s′i(xi), s′′i−1(xi) =
s′′i (xi)

17



Remaining 2 equations come from a choice of how to handle the boundary conditions. A popular
choice is to set s′′(x0) = s′′(xn) = 0, which gives rise to the natural cubic spline interpolant.

Example 9: Finding s(x) on a uniform mesh.

Divide the interval x ∈ [−1, 1] into n subintervals ⇒ n+ 1 points.

xi = −1 + ih, h =
2

n
, i = 0, . . . , n : uniform mesh

step 1: 2nd derivative conditions

s′′i (x) is a linear polynomial ⇒ s′′i (x) = ai

(
xi+1 − x

h

)
+ ai+1

(
x− xi
h

)
Note that s′′i (xi) = ai and s′′i (xi+1) = ai+1 ⇒ s′′i−1(xi) = ai = s′′i (xi)

Hence s′′(x) is continuous at the interior points.

step 2: interpolation

Integrate twice:

s′i(x) =

∫
s′′i (x) dx = − ai

2h
(x−xi+1)

2 +
ai+1

2h
(x−xi)2 +

ai
2h
x2i+1−

ai+1

2h
x2i +C0, C0 = constant

of integration

Define bi =
ai+1

2
x2i −

1

2
C0 and ci =

ai
2
x2i +

1

2
C0 so that

s′i(x) = − ai
2h

(x− xi+1)
2 +

ai+1

2h
(x− xi)2 −

bi
h

+
ci
h
.

si(x) =

∫
s′i(x) dx =

ai
6h

(xi+1 − x)3 +
ai+1

6h
(x− xi)3 −

bi
h
x+

ci
h
x+ C1

Define C1 = bi
xi+1

h
− ci

xi
h

; then

si(x) =
ai
6h

(xi+1 − x)3 +
ai+1

6h
(x− xi)3 + bi

(
xi+1 − x

h

)
+ ci

(
x− xi
h

)
Interpolation conditions: s(xi) = f(xi)

si(xi) =
aih

2

6
+ bi = fi ⇒ bi = fi −

aih
2

6

si(xi+1) =
ai+1h

2

6
+ ci = fi+1 ⇒ ci = fi+1 −

ai+1h
2

6

si(x) =
ai
6h

(xi+1−x)3 +
ai+1

6h
(x−xi)3 +

(
fi −

aih
2

6

)(
xi+1 − x

h

)
+

(
fi+1 −

ai+1h
2

6

)(
x− xi
h

)

step 3: 1st derivative conditions

s′i(x) = − ai
2h

(x− xi+1)
2 +

ai+1

2h
(x− xi)2 −

1

h

(
fi −

aih
2

6

)
+

1

h

(
fi+1 −

ai+1h
2

6

)
s′i(xi) = −aih

2
− fi
h

+
aih

6
+
fi+1

h
− ai+1h

6

s′i(xi+1) =
ai+1h

2
− fi
h

+
aih

6
+
fi+1

h
− ai+1h

6
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Continuity : s′i−1(xi) = s′i(xi)

aih

2
− fi−1

h
+
ai−1h

6
+
fi
h
− aih

6
= −aih

2
− fi
h

+
aih

6
+
fi+1

h
− ai+1h

6

ai−1h

6
+ ai

(
h

2
− h

6
+
h

2
− h

6

)
+
ai+1h

6
=
fi−1
h
− fi
h
− fi
h

+
fi+1

h

ai−1 + 4ai + ai+1 =
6

h2
(fi−1 − 2fi + fi+1) , i = 1 : n− 1

step 4 : boundary conditions

s′′0(x0) = 0⇒ a0 = 0, s′′n−1(xn) = 0⇒ an = 0


4 1
1 4 1

. . .
. . .

. . .
. . .

. . . 1
1 4





a1
...
...
...

an−1


=

6

h2



f0 − 2f1 + f2
...
...
...

fn−2 − 2fn−1 + fn


Matrix A is symmetric, tridiagonal, and positive definite; it is also strictly diagonally dominant,
which implies that a unique solution vector exists.

Tuesday, 11/12/13

Notes:

• If f ′′(x) = 0 at x = x0 and x = xn, then the natural cubic spline is 4th order accurate.

• Clamped boundary conditions : If f ′(a) and f ′(b) are known, apply them to s′(x0) and
s′(xn); then the clamped cubic spline is 4th order accurate.

4

Example 10: natural cubic spline interpolation

f(x) =
1

1 + 25x2
, − 1 ≤ x ≤ 1, xi = −1 + ih, h =

2

n
, i = 0 : n
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4

4 Hermite interpolation

Text : section 5.7

Another way of handling Runge’s phenomenon is to notice that although the interpolating
polynomial pn(x) interpolates the data pn(xi) = f(xi) at each point xi, the polynomial may
intersect the graph of f at very steep angles. It would be better if the interpolating function
p(x) was parallel to f(x) at the interpolating points; that its, we would like p′(xi) = f ′(xi).
Cubic splines come close to achieving this, but don’t quite get there.

Suppose we have values for f(xi) and f ′(xi) on an interval a ≤ x ≤ b with n subdivisions and
n+ 1 points,

a = x0 < x1 < · · · < xn−1 < xn = b, h =
b− a
n

, xi = a+ ih, i = 0, . . . , n

we want to determine a polynomial p(x) that interpolates the data and goes through each point
(xi, fi) with slope f ′(xi), that is, the polynomial p should satisfy

p(xi) = f(xi), p′(xi) = f ′(xi), i = 0, . . . , n

20



Note that the data include the function values and the function derivatives, each at n+1 points,
for a total of 2n+ 2 input values to the interpolation problem; hence we know p can have degree
of at most 2n+ 1.

Theorem 10. Let the interval a ≤ x ≤ b be divided into n subintervals by n+ 1 distinct points,
and the function f and its first derivative f ′ be defined at each of these points. Then there exists
a unique polynomial p(x) of degree less than or equal to 2n+ 1 such that

p(xi) = f(xi), p′(xi) = f ′(xi), i = 0, . . . , n

Proof. Let Lk(x) denote the Lagrange polynomial of degree ≤ n centered about the kth data
location,

Lk(x) =
n∏
i=0
i 6=k

(
x− xi
xk − xi

)
.

Define the polynomials

Hk(x) =
(
1− 2L′k(xk)(x− xk)

)
L2
k(x)

Ĥk(x) = (x− xk)L2
k(x)

Note that both of these polynomials have degree ≤ 2n+ 1. Also

Hk(xi) =

{
1, i = k

0, i 6= k

H ′k(x) = −2L′k(xk)L
2
k(x) + 2

(
1− 2L′k(xk)(x− xk)

)
Lk(x)L′k(x)

⇒ H ′k(xi) = 0

Ĥk(xi) = 0

Ĥ ′k(x) = L2
k(x) + 2(x− xk)LkL′k(x)

⇒ Ĥ ′k(xi) =

{
1, i = k

0, i 6= k

These definitions and properties make it clear that Hk is associated with the function, and Ĥk

is associated with the derivative at x = xk.
Define the polynomial

p(x) =

n∑
k=0

f(xk)Hk(x) +

n∑
k=0

f ′(xk)Ĥk(x).

From the properties of Hk above, we have

p(xi) =

n∑
k=0

f(xk)Hk(xi) +

n∑
k=0

f ′(xk)Ĥk(xi) = f(xi)

p′(xi) =

n∑
k=0

f(xk)H
′
k(xi) +

n∑
k=0

f ′(xk)Ĥ
′
k(xi) = f ′(xi)

for all i = 0, . . . , n. The polynomial p therefore interpolates all function and derivative values.
Uniqueness follows from the fundamental theorem of algebra.
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As with our previous work with global interpolating polynomials, the Lagrange form is useful to
establish existence, but cumbersome to use in practice. The Hermite interpolating polynomial
is more efficiently computed and evaluated in Newton’s form using a divided difference table.
Before we start the table, we need to add another item to our understanding of divided differ-
ences:

Definition 11. Divided differences of the form f [xi, xi] are understood to be f [xi, xi] = f ′(xi).
We justify this definition by considering the usual divided difference

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi

in the limit xi+1 → xi. The divided difference in this limit is simply the definition of f ′(xi),

lim
xi+1→xi

f [xi, xi+1] = f [xi, xi] = lim
xi+1→xi

f(xi+1)− f(xi)

xi+1 − xi
.

The divided difference table for Hermite interpolation is augmented from the previous version
to account for the addition of the derivative data :

x f(x)

x0 f [x0]
f[x0, x0]

x0 f [x0] f [x0, x0, x1]
f[x0, x1]

x1 f [x1] f [x0, x1, x1]
f[x1, x1]

x1 f [x1] f [x1, x1, x2]
f[x1, x2]

x2 f [x2] f [x1, x2, x2]
f[x2, x2]

x2 f [x2] f [x2, x2, x3]
f[x2, x3]

x3 f [x3] f [x2, x3, x3]
f[x3, x3]

x3 f [x3] f [x3, x3, x4]
f[x3, x4]

x4 f [x4] f [x3, x4, x4]

f[x4, x4]
...

x4 f [x4]
...

...
...

Example 11: Hermite interpolation of f(x) = xe−x on 0 ≤ x ≤ 4 with n = 2

⇒ x0 = 0, x1 = 2, x2 = 4

f ′(x) = (1− x)e−x
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x f(x)

0 0
f ′(0) = 1

0 0 (e−2 − 1)/2
e−2 (−3e−2 + 1)/4

2 2e−2 −e−2 (e−4 + 4e−2 − 1)/16
f ′(2) = −e−2 (e−4 + e−2)/4 (−9e−4 − 4e−2 + 1)/64

2 2e−2 e−4 −e−4/2
2e−4 − e−2 (−7e−4 + e−2)/4

4 4e−4 (−5e−4 + e−2)/2
f ′(4) = −3e−4

4 4e−4

To write the polynomial, we introduce the sequence {zk} where zk = xbk/2c, k = 0, . . . , 2n+ 1 :

{zk} = {x0, x0, x1, x1, x2, x2, . . . , xn−1xn−1, xn, xn}

p(x) =
2n+1∑
k=0

f [z0, z1, . . . , zk]

(
k−1∏
i=0

(x− zi)

)
The terms of this sum are

k = 0 : f [z0] = f(x0)
k = 1 : f [z0, z1](x− z0) = f ′(x0)(x− x0)
k = 2 : f [z0, z1, z2](x− z0)(x− z1) = f [x0, x0, x1](x− x0)2
k = 3 : f [z0, z1, z2, z3](x− z0)(x− z1)(x− z2) = f [x0, x0, x1, x1](x− x0)2(x− x1)
k = 4 : f [z0, . . . , z4](x− z0)(x− z1)(x− z2)(x− z3) = f [x0, x0, x1, x1, x2](x− x0)2(x− x1)2
k = 5 : f [z0, . . . , z5](x− z0)(x− z1)(x− z2)(x− z3)(x− z4) = f [x0, x0, x1, x1, x2, x2](x− x0)2(x− x1)2(x− x2)

Note that the coefficients are conveniently the top entry in each column of the divided difference
table. Plugging those values in, along with x0 = 0, x1 = 2, x2 = 4, we find

p(x) = x+

(
e−2 − 1

2

)
x2−

(
3e−2 − 1

4

)
x2(x−2)+

(
e−4 + 4e−2 − 1

16

)
x2(x−2)2−

(
9e−4 + 4e−2 − 1

64

)
x2(x−2)2(x−4)

23



4

Notes:

• Hermite interpolation can be very accurate, but the 2n + 1 data points can be expensive
to use if n is large.

• Can we use this idea more efficiently?

4.1 Piecewise cubic Hermite interpolation

Definition 12. The Hermite cubic interpolant of f(x) on the interval a ≤ x ≤ b with n subin-
tervals

a = x0 < x1 < · · · < xn−1 < xn = b

is a function s that satisfies

1. s(x) coincides with a cubic polynomial si(x) on each subinterval

2. s interpolates both f(x) and f ′(x) at each data point

3. s(x) and s′(x) are continuous on a ≤ x ≤ b.

Note that there is no continuity condition imposed on s′′(x), hence cubic Hermite splines are
not as smooth as natural cubic splines, but computing them requires less work.

Definition 13. The shape functions φ(ξ) and ψ(ξ) associated with cubic Hermite interpolation
are

φ(ξ) = (1 + 2ξ)(1− ξ)2

ψ(ξ) = ξ(1− ξ)2
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where the variable ξ is defined on each subinterval as ξj =
x− xj

xj+1 − xj
.

Definition 14. Given f(xi) and f ′(xi) for i = 0, . . . , n, the cubic Hermite interpolant is defined
on each subinterval of a ≤ x ≤ b to be

sj(x) = f(xj+1) + φ(ξj) (f(xj)− f(xj+1)) + (xj+1 − xj)
(
ψ(ξj)f

′(xj)− ψ(1− ξj)f ′(xj+1)
)

so that
s(x) = sj(x) for xj ≤ x ≤ xj+1, j = 0, . . . , n− 1

Notes:

• Unlike cubic splines, no linear system of equations has to be solved

• Only three function evaluations : φ(ξj), ψ(ξj), and ψ(1−ξj) are required to evaluate sj(x).

• Like any local method, still have to locate the interval j that contains the evaluation point
to begin

• If the function itself is not differentiable, it is better to use the less-smooth cubic Hermite
interpolation than cubic splines

• If you know the function you’re interpolating is smooth, splines will provide better accuracy
than cubic Hermite interpolation

Question 4: It’s great that Hermite interpolation is accurate and that piecewise cubic Hermite
interpolation is so fast, but what if we don’t have data about f ′(x)? Can we still use these
ideas?

Example 12: Compare Matlab’s piecewise cubic spline interpolation to its piecewise cubic
Hermite interpolation for the data given in the following table.

x y

-3 -1
-2 -1
-1 -1
0 0
1 1
2 1
3 1

4
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clear ;
%% Cubic Hermite i n t e r p o l a t i o n vs . c u b i c s p l i n e i n t e r p o l a t i o n

x = −3:3; % data l o c a t i o n s
y = [−1 ,−1 ,−1 , 0 , 1 , 1 , 1 ] ; % data v a l u e s

xe = −3 : 0 . 01 : 3 ; % e v a l u a t i o n domain

sHermite = pchip (x , y , xe ) ; % c u b i c Hermite i n t e r p o l a t i o n
s S p l i n e = spline (x , y , xe ) ; % c u b i c s p l i n e i n t e r p o l a t i o n
% Note : read Matlab ’ s documentation to l e a r n how the d e r i v a t i v e s are
% es t imated f o r the Hermite i n t e r p o l a t i o n . I t ’ s more i n v o l v e d than a
% simple f i n i t e d i f f e r e n c e scheme −− they use l i m i t e r s (Math 572) .

f igure ( 1 ) ; c l f ;
plot (x , y , ’ ko ’ , xe , sHermite , ’b− ’ , xe , sSp l ine , ’ r−− ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ , 2 ) ;
set (gca , ’ FontSize ’ , 1 6 ) ;
legend ( ’ data ’ , ’ p/w Hermite ’ , ’ s p l i n e ’ , ’ Locat ion ’ , ’ SouthEast ’ ) ;

saveas (1 , ’ sp l ineVsHermite . png ’ )
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