Problem Set 3

Due Friday, January 30

1. Consider a spin $1 / 2$ atom in a state $|\chi\rangle=a|\uparrow\rangle+b|\downarrow\rangle$ in a system quantized along the z-axis. Suppose there is a magnetic field \mathbf{B} having polar angles (θ, ϕ). Rotate the system so the magnetic field is along the z -axis and calculate the components of $|\chi\rangle^{\prime}$ after this active rotation [Hint: show that the active rotation is given by Euler angles $(\alpha, \beta, \gamma)=(\pi / 2,-\theta,-\phi)]$. If $a=1$ and $b=0$ show that the result agrees with that given on page 180 of the coursepack notes with $\phi=\pi / 2, \theta \rightarrow \phi$.

2-3. Consider a spin one particle having standard components

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) ; \quad S_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) ; \quad S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Show that for an infinitesmal rotation around the z-axis, that the components of \mathbf{S} transform as a vector (this is true for any 3×3 matrices obeying the standard commutation relations). On the other hand, show that the components of the spin state

$$
\psi=\left(\begin{array}{c}
\psi_{1} \\
\psi_{0} \\
\psi_{-1}
\end{array}\right)
$$

do not transform as a cartesian vector. Thus, in the standard $|s m\rangle$ basis, the components of ψ do not transform as a cartesion vector. However, there is a basis in which the components of $\psi d o$ transform as a cartesian vector. To see this explicitly show that under the unitary transformation

$$
\psi^{\prime}=\left(\begin{array}{l}
\psi_{x} \\
\psi_{y} \\
\psi_{z}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
-i & 0 & -i \\
0 & \sqrt{2} & 0
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{0} \\
\psi_{-1}
\end{array}\right)
$$

the spin \mathbf{S} transforms as

$$
S_{x}^{\prime}=i \hbar\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) ; \quad S_{y}^{\prime}=i \hbar\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) ; S_{z}^{\prime}=i \hbar\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and that the components of ψ^{\prime} transform as a vector under the infinitesmal rotation $\mathbf{U}=\exp \left[-i \mathbf{S}^{\prime} \cdot \delta \boldsymbol{\varphi} / \hbar\right]$. Actually, both ψ^{\prime} and ψ transform as vectors under rotation. It is just that different definitions of the transformation properties are used for standard and cartesian
components of a vector.
4. Consider the 2-D isotropic harmonic oscillator with Hamiltonian $H=\frac{\hbar \omega}{2}\left(\eta^{2}+\xi^{2}\right)$, where η and ξ are dimensionless variable satisfying $\left[\xi_{x}, \eta_{x}\right]=i ;\left[\xi_{y}, \eta_{y}\right]=i$. Prove that the Hamiltonian can be written in the form

$$
H=\hbar \omega \sqrt{\left(4 K^{2}+1\right)}
$$

where

$$
\begin{aligned}
& K_{1}=\frac{\eta_{x}^{2}-\eta_{y}^{2}}{4}+\frac{\xi_{x}^{2}-\xi_{y}^{2}}{4} \\
& K_{2}=\frac{\eta_{x} \eta_{y}}{2}+\frac{\xi_{x} \xi_{y}}{2} \\
& K_{3}=\frac{\xi_{x} \eta_{y}-\xi_{y} \eta_{x}}{2}
\end{aligned}
$$

Show that the $K^{\prime} s$ satisfy the standard commutation relations for angular momentum matrices. Use this fact to obtain the allowed energy levels for the oscillator and to prove that the underlying symmetry group is $S U(2)$. How does this explain the degeneracy of the levels?
5. Use the program on page 299 of the coursepack to calculate the rotation matrices for $\mathrm{J}=1 / 2, \mathrm{~J}=1$, and $\mathrm{J}=3 / 2$.

