Phys 512	Prof. P. Berman
Quantum Mechanics II	Winter, 2004

Problem Set 12

Due Friday, April 9

This is the last problem set for the semester. The last recitation will be on April 8, although there will be a review session on Tuesday, April 27, from 4-5:30 in 4246 Randall.

Final Exam: Wednesday, April 28 1:30-6:30 Room 335 West Hall

1. The first excited state of Helium has the configuration $1s^12s^1$ or $1s^12p^1$. In a rough approximation assume the wave functions are given by hydrogenic wave functions by neglecting the $e^2/|\mathbf{r}_1 - \mathbf{r}_2|$ term in the Hamiltonian. Show that the first excited state in this approximation is 16-fold degenerate and find the energy E_2 of this state. Now consider the $e^2/|\mathbf{r}_1 - \mathbf{r}_2|$ as a perturbation. Using properly symmetrized wave functions, show that the some of the degeneracy is broken and that the energy of the 3S and 1S states are given by

 $E({}^{1}S, {}^{3}S) = E_{2} + (E_{d}(s) \pm E_{e}(s))$

where the *direct* and *exchange* integrals are given by

$$E_d(s) = \int \psi_{100}^*(\mathbf{r}_1) \psi_{200}^*(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \psi_{100}(\mathbf{r}_1) \psi_{200}(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

$$E_e(s) = \int \psi_{100}^*(\mathbf{r}_1) \psi_{200}^*(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \psi_{100}(\mathbf{r}_2) \psi_{200}(\mathbf{r}_1) d\mathbf{r}_1 d\mathbf{r}_2$$

while the energy of the ${}^{3}P$ and ${}^{1}P$ states are given by

$$E({}^{1}P, {}^{3}P) = E_{2} + (E_{d}(p) \pm E_{e}(p))$$

where

$$E_d(p) = \int \psi_{100}^*(\mathbf{r}_1) \psi_{210}^*(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \psi_{100}(\mathbf{r}_1) \psi_{210}(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

$$E_e(p) = \int \psi_{100}^*(\mathbf{r}_1) \psi_{210}^*(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \psi_{100}(\mathbf{r}_2) \psi_{210}(\mathbf{r}_1) d\mathbf{r}_1 d\mathbf{r}_2.$$

You need not evaluate these integrals (but you can if you wish). Their values are $E_d(s) = 11.4$ ev, $E_e(s) = 1.2$ ev, $E_d(p) = 13.4$ ev, $E_e(s) = 0.94$ ev. Draw an energy level diagram for the first excited states using these values and your value of E_2 .

2. Problem T11.

3. Problem T13.

4. Problem T14. Estimate the temperatures at which rotational and vibrational degrees of freedom are "frozen out".

5. Prove explicitly that if two states having l = 1 and the same *n* are coupled, the resulting states having angular momentum L = 0, 1, 2 are either symmetric or antisymmetric on particle exchange. Problem 113.

6. Prove explicitly that the state $\psi(1,2,3) = \psi_{11}(1)\psi_{11}(2)\psi_{10}(3) \uparrow (1) \downarrow (2) \uparrow (3)$ when properly antisymmetrized is an eigenstate of L^2 with eigenvalue $6\hbar^2$ and an eigenstate of S^2 with an eigenvalue $(3/4)\hbar^2$. The ψ_{lm} are the spatial wave functions. Thus this state is a ²D state as claimed in class.