Phys 512
Quantum Mechanics II

Prof. P. Berman
Winter, 2004

$$
\begin{gathered}
\text { Problem Set } 12 \\
\text { Due Friday, April } 9
\end{gathered}
$$

This is the last problem set for the semester. The last recitation will be on April 8, although there will be a review session on Tuesday, April 27, from 4-5:30 in 4246 Randall.

Final Exam: Wednesday, April 28 1:30-6:30 Room 335 West Hall

1. The first excited state of Helium has the configuration $1 s^{1} 2 s^{1}$ or $1 s^{1} 2 p^{1}$. In a rough approximation assume the wave functions are given by hydrogenic wave functions by neglecting the $e^{2} /\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ term in the Hamiltonian. Show that the first excited state in this approximation is 16 -fold degenerate and find the energy E_{2} of this state. Now consider the $e^{2} /\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ as a perturbation. Using properly symmetrized wave functions, show that the some of the degeneracy is broken and that the energy of the ${ }^{3} S$ and ${ }^{1} S$ states are given by

$$
E\left({ }^{1} S,{ }^{3} S\right)=E_{2}+\left(E_{d}(s) \pm E_{e}(s)\right)
$$

where the direct and exchange integrals are given by

$$
\begin{aligned}
E_{d}(s) & =\int \psi_{100}^{*}\left(\mathbf{r}_{1}\right) \psi_{200}^{*}\left(\mathbf{r}_{2}\right) \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{100}\left(\mathbf{r}_{1}\right) \psi_{200}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2} \\
E_{e}(s) & =\int \psi_{100}^{*}\left(\mathbf{r}_{1}\right) \psi_{200}^{*}\left(\mathbf{r}_{2}\right) \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{100}\left(\mathbf{r}_{2}\right) \psi_{200}\left(\mathbf{r}_{1}\right) d \mathbf{r}_{1} d \mathbf{r}_{2}
\end{aligned}
$$

while the energy of the ${ }^{3} P$ and ${ }^{1} P$ states are given by

$$
E\left({ }^{1} P,{ }^{3} P\right)=E_{2}+\left(E_{d}(p) \pm E_{e}(p)\right)
$$

where

$$
\begin{aligned}
& E_{d}(p)=\int \psi_{100}^{*}\left(\mathbf{r}_{1}\right) \psi_{210}^{*}\left(\mathbf{r}_{2}\right) \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{100}\left(\mathbf{r}_{1}\right) \psi_{210}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2} \\
& E_{e}(p)=\int \psi_{100}^{*}\left(\mathbf{r}_{1}\right) \psi_{210}^{*}\left(\mathbf{r}_{2}\right) \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{100}\left(\mathbf{r}_{2}\right) \psi_{210}\left(\mathbf{r}_{1}\right) d \mathbf{r}_{1} d \mathbf{r}_{2} .
\end{aligned}
$$

You need not evaluate these integrals (but you can if you wish). Their values are $E_{d}(s)=11.4 \mathrm{ev}, E_{e}(s)=1.2 \mathrm{ev}, E_{d}(p)=13.4 \mathrm{ev}, E_{e}(s)=0.94 \mathrm{ev}$. Draw an energy level diagram for the first excited states using these values and your value of E_{2}.
2. Problem T11.
3. Problem T13.
4. Problem T14. Estimate the temperatures at which rotational and vibrational degrees of freedom are "frozen out".
5. Prove explicitly that if two states having $\ell=1$ and the same n are coupled, the resulting states having angular momentum $L=0,1,2$ are either symmetric or antisymmetric on particle exchange. Problem 113.
6. Prove explicitly that the state $\psi(1,2,3)=\psi_{11}(1) \psi_{11}(2) \psi_{10}(3) \uparrow(1) \downarrow(2) \uparrow$ (3) when properly antisymmetrized is an eigenstate of L^{2} with eigenvalue $6 \hbar^{2}$ and an eigenstate of S^{2} with an eigenvalue (3/4) \hbar^{2}. The $\psi_{\ell m}$ are the spatial wave functions. Thus this state is a ${ }^{2} D$ state as claimed in class.

