1. Explain each of the following (one or two sentences will do) 10 points each part:
a Although the parity operator commutes with the Hamiltonian for a free particle, $\exp (i \mathbf{p} \cdot \mathbf{r} / \hbar)$ is not a simultaneous eigenfunction of the Hamiltonian and the parity operator.
b A particle moves in a symmetric infinite square well. Although $\langle x\rangle=0$ for each eigenstate in the well, $\langle x\rangle \neq 0$ for a particle in a superposition of eigenstates.
c It takes many measurements on identically prepared systems to construct $|\psi(\mathbf{r}, t)|^{2}$.
d Matter can exhibit both wave-like and particle-like behavior.

2 The simple harmonic oscillator (in dimensionless variables) has normalized eigenfunctions

$$
\psi_{n}(\xi)=\frac{1}{\sqrt{\pi^{1 / 2} 2^{n} n!}} e^{-\xi^{2} / 2} H_{n}(\xi)
$$

where the first few Hermite polynomials are

$$
\begin{aligned}
H_{0}(x) & =1 \\
H_{1}(x) & =2 \xi \\
H_{2}(x) & =-2+4 \xi^{2} \\
H_{3}(x) & =-12 \xi+8 \xi^{3}
\end{aligned}
$$

and the dimensionless energies are $E_{n}=\left(n+\frac{1}{2}\right)$.
Consider a particle moving in a potential $V(x)=\xi^{2} / 2$ (in dimensionless variables) for $x>0 ; V(x)=\infty$ for $x \leq 0$. At $t=0$ the particle is in the state described by

$$
\begin{aligned}
\psi(\xi, 0) & =A \frac{1}{\sqrt{\pi^{1 / 2}}} e^{-\xi^{2} / 2}\left[(\sqrt{2}-2 \sqrt{3}) \xi+\frac{4}{\sqrt{3}} \xi^{3}\right] \text { for } \xi>0 \\
& =0 \text { for } \xi \leq 0
\end{aligned}
$$

where A is chosen such that $\int_{-\infty}^{\infty}|\psi(\xi, 0)|^{2} d \xi=1$.
a Find the eigenfunctions and eigenvalues for the particle moving in this potential. 10 points
b Show that $\psi(\xi, 0)=\frac{\sqrt{2}}{\sqrt{5}}\left[\psi_{1}(\xi)+2 \psi_{3}(\xi)\right]$ for $\xi>0$, where $\psi_{1}(\xi)$ and $\psi_{3}(\xi)$ are given above. 10 points
c Calculate the probability that a measurement of the oscillator's energy yields a value $E=3 / 2$ at $t=0$? What is $\langle E\rangle$? 10 points
d Write an integral expression for $\langle\hat{\xi}\rangle$ at $t=0$ (do not evaluate the integrals). Would $\langle\hat{\xi}\rangle=0$ in an eigenstate? Explain. 10 points
e Prove that $\langle\hat{\eta}\rangle=0$ at $t=0$ where $\hat{\eta}$ is the dimensionless momentum operator. Hint: You do not need to evaluate any integrals to prove this if you use the definition of $\hat{\eta}$ and an integration by parts. 10 points
f Write an expression for the wave function for times $t>0$. (you may use units in which $\hbar=1$). 10 points

Note: $\int_{-\infty}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} a^{n}} \sqrt{\frac{\pi}{a}}$ for $n \geq 1 ; \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} ;$ $\int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}}$ for $n \geq 0$.
$\frac{d \psi_{n}}{d \xi}=\sqrt{2 n} \psi_{n-1}-\xi \psi_{n} ; \quad \xi \psi_{n}=\left(\sqrt{n+1} \psi_{n+1}+\sqrt{n} \psi_{n-1}\right) / \sqrt{2}$

3
a Prove that $[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B} .10$ Points
b For any time independent Hermitian operator \hat{A}, prove that $i \hbar \frac{d\langle\hat{A}\rangle}{d t}=$ $[\hat{A}, \hat{H}]$, where \hat{H} is the Hamiltonian describing the system in which the operator \hat{A} is defined. 10 points
c Now consider a free particle of mass m in one dimension having $\langle x\rangle=0$ at $t=0$. Find $\left\langle x^{2}\right\rangle$ as a function of t in terms of $a \equiv\left\langle p^{2}\right\rangle_{t=0}, b \equiv$ $\langle x p+p x\rangle_{t=0}$, and $c \equiv\left\langle x^{2}\right\rangle_{t=0}$. Find the time for which $\left\langle x^{2}\right\rangle$ is a minimum and show that the wave function must spread for sufficiently long times. Hint: Use the results of parts (a) and (b). 30 points

4 A particle of mass m is confined to the potential $V=\infty,|x|>b ; V=0$, $|x| \leq(b-a) ; V=-V_{0},|x| \leq a$ (see figure).
a Using a simple uncertainty principle argument, prove that there is not necessarily a bound state for energies $E<0$. Why does this result differ from that found in class for a one-dimensional finite well for which a bound state always exists. 15 points

Figure 1:
b Now write down the eigenfunctions and obtain an equation that can be used to obtain the eigenvalues for the lowest energy eigenstate when $E<0$. (Hints: What must be the wave function for $|x|>b$? What is the parity of the lowest energy eigenstate? The boundary condition at $|x|=b$ can be built directly into the wave function, although this is not necessary.) 25 points
c This is a 25 point bonus question For the case $b=2 a$, assume that $\beta<\pi / 2\left(\beta^{2}=\frac{2 m V_{0} a^{2}}{\hbar^{2}}\right)$ and show graphically that the condition for which a bound state exists is determined by a solution of the equation $\tan \beta \geq$ $1 / \beta$.

