Sample Midterm Exam Time - 90 minutes.

- 1. Explain *each* of the following (one or two sentences will do) 10 points each part:
- a Although the parity operator commutes with the Hamiltonian for a free particle, $\exp(i\mathbf{p}\cdot\mathbf{r}/\hbar)$ is *not* a simultaneous eigenfunction of the Hamiltonian and the parity operator.
- b A particle moves in a symmetric infinite square well. Although $\langle x \rangle = 0$ for each eigenstate in the well, $\langle x \rangle \neq 0$ for a particle in a superposition of eigenstates.
- c It takes many measurements on identically prepared systems to construct $\left|\psi(\mathbf{r},t)\right|^2$.
- d Matter can exhibit both wave-like and particle-like behavior.
- 2 The simple harmonic oscillator (in dimensionless variables) has normalized eigenfunctions

$$\psi_n(\xi) = \frac{1}{\sqrt{\pi^{1/2} 2^n n!}} e^{-\xi^2/2} H_n(\xi)$$

where the first few Hermite polynomials are

$$H_0(x) = 1$$

$$H_1(x) = 2\xi$$

$$H_2(x) = -2 + 4\xi^2$$

$$H_3(x) = -12\xi + 8\xi^3$$

and the dimensionless energies are $E_n = \left(n + \frac{1}{2}\right)$.

Consider a particle moving in a potential $V(x) = \xi^2/2$ (in dimensionless variables) for x > 0; $V(x) = \infty$ for $x \le 0$. At t = 0 the particle is in the state described by

$$\psi(\xi, 0) = A \frac{1}{\sqrt{\pi^{1/2}}} e^{-\xi^2/2} \left[\left(\sqrt{2} - 2\sqrt{3}\right) \xi + \frac{4}{\sqrt{3}} \xi^3 \right] \text{ for } \xi > 0$$

= 0 for $\xi \le 0$

where A is chosen such that $\int_{-\infty}^{\infty} |\psi(\xi, 0)|^2 d\xi = 1.$

- a Find the eigenfunctions and eigenvalues for the particle moving in this potential. 10 points
- b Show that $\psi(\xi, 0) = \frac{\sqrt{2}}{\sqrt{5}} [\psi_1(\xi) + 2\psi_3(\xi)]$ for $\xi > 0$, where $\psi_1(\xi)$ and $\psi_3(\xi)$ are given above. 10 points
- c Calculate the probability that a measurement of the oscillator's energy yields a value E = 3/2 at t = 0? What is $\langle E \rangle$? 10 points
- d Write an integral expression for $\langle \hat{\xi} \rangle$ at t = 0 (do **not** evaluate the integrals). Would $\langle \hat{\xi} \rangle = 0$ in an eigenstate? Explain. 10 points
- e Prove that $\langle \hat{\eta} \rangle = 0$ at t = 0 where $\hat{\eta}$ is the dimensionless momentum operator. Hint: You do not need to evaluate any integrals to prove this if you use the definition of $\hat{\eta}$ and an integration by parts. 10 points
- f Write an expression for the wave function for times t > 0. (you may use units in which $\hbar = 1$). 10 points

Note:
$$\int_{-\infty}^{\infty} x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n a^n} \sqrt{\frac{\pi}{a}} \text{ for } n \ge 1; \\ \int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}; \\ \int_{0}^{\infty} x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}} \text{ for } n \ge 0. \\ \frac{d\psi_n}{d\xi} = \sqrt{2n} \psi_{n-1} - \xi \psi_n; \quad \xi \psi_n = \left(\sqrt{n+1} \psi_{n+1} + \sqrt{n} \psi_{n-1}\right) / \sqrt{2}$$

3

a Prove that $\left[\hat{A}\hat{B},\hat{C}\right] = \hat{A}\left[\hat{B},\hat{C}\right] + \left[\hat{A},\hat{C}\right]\hat{B}$. 10 Points

- b For any time independent Hermitian operator \hat{A} , prove that $i\hbar \frac{d\langle \hat{A} \rangle}{dt} = [\hat{A}, \hat{H}]$, where \hat{H} is the Hamiltonian describing the system in which the operator \hat{A} is defined. 10 points
- c Now consider a free particle of mass m in one dimension having $\langle x \rangle = 0$ at t = 0. Find $\langle x^2 \rangle$ as a function of t in terms of $a \equiv \langle p^2 \rangle_{t=0}$, $b \equiv \langle xp + px \rangle_{t=0}$, and $c \equiv \langle x^2 \rangle_{t=0}$. Find the time for which $\langle x^2 \rangle$ is a minimum and show that the wave function must spread for sufficiently long times. Hint: Use the results of parts (a) and (b). 30 points
- 4 A particle of mass m is confined to the potential $V = \infty$, |x| > b; V = 0, $|x| \le (b-a)$; $V = -V_0$, $|x| \le a$ (see figure).
- a Using a simple uncertainty principle argument, prove that there is not necessarily a bound state for energies E < 0. Why does this result differ from that found in class for a one-dimensional finite well for which a bound state always exists. 15 points

Figure 1:

- b Now write down the eigenfunctions and obtain an equation that can be used to obtain the eigenvalues for the lowest energy eigenstate when E < 0. (Hints: What must be the wave function for |x| > b? What is the parity of the lowest energy eigenstate? The boundary condition at |x| = b can be built directly into the wave function, although this is not necessary.) 25 points
- c This is a 25 point bonus question For the case b = 2a, assume that $\beta < \pi/2 \left(\beta^2 = \frac{2mV_0a^2}{\hbar^2}\right)$ and show graphically that the condition for which a bound state exists is determined by a solution of the equation $\tan \beta \geq 1/\beta$.