
Phys 511 Prof. P. Berman
Quantum Mechanics I Fall, 2003
__________________________________________________________________________

Sample Final Examination

Answer all questions. Read all questions carefully and answer what is asked for. Show all
work and write legibly. Credit as indicated. Time: 3 hours.

I. Answer each of the following (15 points each part, except for part 11 which carries 25
points credit):
1. State at least three properties of Hermitian operators.
2. Of what use are commuting operators in quantum theory? Give an example.
3. Calculate the reflection coefficient for scattering from a potential step barrier when the
energy is greater than the height of the barrier V0.

4. A particle of mass m moves in a 1-D infinite square well potential, Vx  0;0  x  L;
Vx  ; otherwise. If x, 0  1

ba
; a  x  b and is zero otherwise (0  a,b  L),

find x, t.
5. For potentials with finite range, prove that the asymptotic form for the radial wave
function for positive energy solutions as r   is of the form u  A sinkr  . How is
 related to the partial wave shifts? Explain.

6. Estimate the ground state energy of a particle of mass m moving in the potential
Vx  mg|x|.

7. Write the operator Lx in the |m basis for a state with   2. What are the eigenvalues of
this operator in this   2 subspace? In order to get the eigenkets, what physical operation
must be carried out on the |m eigenkets?

8. An operator A whose eigenkets are denoted by |b can be expressed in the ”|b" basis as
A  4|b1 b1 |  4|b2 b2 |  |b1 b2 |  |b2 b1 |.

Find the eigenvalues of this operator and express its eigenvectors in the |b basis.
9. A particle of mass m moves in a 1-D infinite square well potential, Vx  0;0  x  L;
Vx  ; otherwise. At t  0, the wave function for the particle is smooth, is centered in
the well, and represents a superposition of the first 10 energy states of the well. Estimate
x at t  0. Estimate the time it will take for the wave function to spread to the walls of
the potential.

10. At t  0, a 1-D simple harmonic oscillator is in the state
x, 0  A0x  22x  1x, where nx is a normalized eigenfunction and A is
a normalization factor. The natural frequency of the oscillator is . What are possible
values that a single measurement of the energy can yield and what is the probability for
each measurement? What is the variance E2   E2 and what is the physical significance
of this quantity?

11. At t  0, the normalized state of a 1-D simple harmonic oscillator is
, 0  1

6
0  22  1, where  is a dimensionless variable. Calculate

2  at time t if the natural frequency of the oscillator is . (25)



II. A particle of mass  moves in the potential Vr  V0er
2/a2 , where V0  0.

1. Sketch the potential as a function of r. (5)
2. Draw the effective potential for   0 and   0. Calculate the condition for which is there
a relative maximum in the effective potential? (20)

3. For E  0, what determines the number of possible bound states? Is there always at least
one bound state? Assuming there are several bound states and without solving the radial
equation, sketch the general form for the ground state and the two lowest energy excited
state wave functions. Explain your reasoning in obtaining your graphs. (20)

4. For E  0, determine the conditions for which bound states can occur classically. In the
quantum case, characterize the scattering as a function of energy. Under what conditions
can there be resonances in the scattering cross section? Can there be bound states? (20)



III. Consider scattering of a particle of mass  by the potential
V  V0 r  a;
V  0 r  a,

where V0 is a positive constant.
1. In the limit of low energy scattering ka  1, use the partial wave expansion to calculate
the differential scattering cross section k2  2

2
E . How does your result differ

fundamentally than in the case of an attractive potential? (30)
2. For arbitrary ka, obtain the equations from which the partial wave shifts can be obtained.
About how many partial waves are needed to get a good value for the scattering
amplitude? Explain. (20)

3. Calculate the scattering amplitude and differential scattering cross section in first Born
approximation. Under what conditions will the result agree with part (1)? Explain (20)

IV. The Laplacian in cylindrical coordinates in two dimensions is

2  1




 


 1
2

2
2

,

where   x2  y2 ; cos  x/. Consider the Schrödinger equation in two dimensions for a
cylindrically symmetric potential V  A/ where A  0. A particle of mass  moves in
this potential. Consider only negative energy solutions with k2   2

2
E  0

1. Show that an eigenfunction can be written as
Em,  REmeim,

where m is an integer (positive, negative or zero), and REm satisfies the radial equation
1

d
d  dREmd 

2
2

E  A 
m2
2

REm  0. (10)

2. Show that the asymptotic form of the wave function is  |m| for   0 and e|k| for   ?
(15)

3. Find the bound state energies, (unnormalized) bound state wave functions, and the
degeneracy of each bound state. (50)
The following relations may save you some time:
If gx  xmekxfx, then
gx   mx  kf  f  xmekx and
gx  m2

x2
 m

x2
 2km

x  k2 f  2 mx  kf   f  xmekx



Some Useful Expressions

Laguerre’s equation is xf x    1  xf   qf  0, which, for integral q has solutions
which are the Laguerre polynomials Lqx.

mec2  0.511 Mev
c  h/mc
  e2/c
h  6.63  1027ergs 4.14  1015eVs
  1.06  1027ergs 0.66  1015eVs
fk  1

k 0
 2  1ei sinPcos

k  4
k2
0
 2  1 sin2

jkr  sinkr  
2 /kr

nkr  coskr  
2 /kr

h
1kr  iexpikr  

2 /kr
h
2kr  iexpikr  

2 /kr
j0kr  sinkr/kr
j1kr  sinkr

kr2
 coskr

kr

n0kr  coskr/kr
n1kr   coskrkr2

 sinkr
kr

h0
1kr  iexpikr/kr
h0
2kr  iexpikr/kr
fq   2

2q

0

 rVr sinqrdr; q  2k sin/2
u  k2  V r  1

r2
u  0


0

a y sinqydy  1
q2
sinqa  qacosqa;

L|,m    m  m  1 |,m  1
L  Lx  Ly
a    i/ 2 ; a    i/ 2
a|n  n |n  1; a|n  n  1 |n  1

tana  b  tanatanb
1tana tanb ; tan    3

3 ; tanh    3
3


