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Supplementary Material

Supplementary material will be added from time to time.
Sec. 5.3 - Collapse of the Wave Function
My view that the collapse of the wave function is not a very meaningful

concept is consistent with the statistical interpretation or ensemble interpreta-
tion of quantum mechanics expressed in the articles of L. B. Ballentine [The
statistical interpretaion of quantum mechanics, Reviews of Modern Physics 42,
358-381 (1970)] and R. G. Newton [Probability interpretation of quantum me-
chanics, American Journal of Physics 48, 1029-1034 (1980)]. In some sense,
these articles express the sentiment that quantum mechanics provides a proba-
bility interpretation of measurement only when carried out on an enesemble of
identically prepared systems.
Single-Photon States
In discussing experiments on Bell’s theorem, I introduced the concept of

a single photon state, such as that emitted in spontaneous emission from a
single excited atom. This quantum state is fundamentally different from that
associated with the output of a laser that has been sent through a series of
neutral density filters to reduce its intensity to some arbitrarily small value.
That field is still a coherent state of the field whose average energy (for a pulse)
can be much less than the energy h̄ω0, where ω0 is the carrier frequency of
the pulse. Authors often say that the field is so weak that it serves as a single
photon source, but this is not true. A single photon source can entangle two
atoms, but a low intensity coherent state field cannot. The two types of fields
have very different second-order correaltion functions.
As an interesting example, consider a weak field pulse and a single-photon

field incident on a thin film of glass. In both cases, there is a transmitted and
reflected pulse, but only in the single-photon state are you guaranteed that the
transmitted and reflected pulses are perfectly anti-correlated in the sense that
it is impossible in a single experiment to measure photo-signals on detectors
placed on both sides of the glass film.
Derivation of Equation (21.129)
To derive Eq. (21.129), I used a stated that Eq. (21.62) could be regarded

as a vector equation of the form

Â =
〈α′, J,mJ | Ĵ · Â |α, J,mJ〉

h̄2J (J + 1)
Ĵ,

provided diagonal matrix elements of both sides are taken. I then took the
scalar product of this equation with Î and Â = L̂ or Ŝ and evaluated matrix
elements of the scalar products. This produces the correct result.
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A more rigorous proof is a direct one.

An`jf = 〈n, `, j, f, 0|

(
L̂− Ŝ

)
· Î

r3
|n, `, j, f, 0〉 (1)

In Eq. (1), I replace (L− S) · I by

(L− S) · I =

1∑
q=−1

(−1)q (Lq1 − S
q
1) I−q1 , (2)

where

G11 = −G+√
2

= −Gx + iGy√
2

; (3a)

G−11 =
G−√

2
=
Gx − iGy√

2
; (3b)

G01 = Gz (3c)

(G = L, S, I) are components of an irreducible tensor operator of rank 1. Using
the properties of any angular momentum operator G

G± |g,mg〉 = h̄
√

(g ∓mg) (g ±mg + 1) |g,mg ± 1〉 ; (4a)

Gz |g,mg〉 = mgh̄ |g,mg〉 , (4b)

I can evaluate Eq. (1) as

An`jf =
〈
r−3
〉 1/2∑
mI ,ms=−1/2

1∑
q,=−1

(−1)q
[

` 1/2 j
−mI −ms ms −mI

] [
j 1/2 f
−mI mI 0

]

×
[

` 1/2 j
−m′I −m′s m′s −m′I

] [
j 1/2 f
−m′I m′I 0

]
×
(
Lq,−m′I−m′s,−mI−ms

− Sqm′sms

)
Iqm′ImI

, (5)

where

Lqm′`m`
= 〈Lm′`| L̂

q
1 |Lm`〉 = h̄

 m`δq,0δms,m′s

+ 1√
2

(
−δq,1

√
(g −mg) (g +mg + 1)δm′`,m`+1

+δq,−1
√

(g +mg) (g −mg + 1)δm′`,m`−1

) 
(6a)

Sqm′sms = 〈Sm′s| Ŝ
q
1 |Sms〉 = h̄

[
msδq,0δms,m′s

+ 1√
2

(
−δq,1δms,−1/2δm′s,1/2 + δq,−1δms,1/2δm′s,−1/2

) ] ,
(6b)

Iqm′sms = 〈Im′I | Î
q
1 |ImI〉 = h̄

[
mIδq′,0δmI ,m′I

+ 1√
2

(
−δq,1δmI ,−1/2δm′I ,1/2 + δq,−1δmI ,1/2δm′I ,−1/2

) ] ,
(6c)
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and δn,n′ is a Kronecker delta. The sum can be carried out using a computer
program to arrive at

An`jf = h̄2
[
`(`+ 1)− 3/4

j (j + 1)

] [
f(f + 1)− j(j + 1)− 3/4

2

] 〈
r−3
〉
. (7)

Chap. 6. Normalization of potential well eigenfunctions.
It is actually pretty easy to normalize the bound state eigenfunctions of the

finite potential well. First I do it for the even eigenfunctions, which can be
written as

ψ+E(x) = N+
E


B+eκ

+
Ex x < −a/2

cos
(
k′+E x

)
− a/2 < x < a/2

B+e−κ
+
Ex x > a/2

(8)

where

k′±E =

√
2mE′±

h̄
> 0, (9)

κ±E =

√
−2mE±

h̄
> 0, (10)

and
E′ = E + V0. (11)

Remember that the boundary conditions lead to

cos

(
z′+

2

)
= B+ exp

(
−z

+

2

)
(12a)

k′+E sin

(
z′+

2

)
= B+κ+E exp

(
−z

+

2

)
(12b)

where

z± =

√
−2mE′±

h̄2
a (13)

z′± = k′±E a =

√
β2 − (z±)

2 (14)

β2 =
2mV0

h̄2
a2, (15)

and that the energy is determined from

tan

(
z′+

2

)
=
z+

z′+
. (16)
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Using the wave function, it follows that the normalization is obtained from

2
(
N+
E

)2 [∫ a/2

0

dx cos2
(
z′+x/a

)
+
(
B+
)2 ∫ ∞

a/2

dxe−2z
+x/a

]
= 1

2
(
N+
E

)2 [∫ a/2

0

dx cos2
(
z′+x/a

)
+ cos2

(
z′+/2

)
ez

+

∫ ∞
a/2

dxe−2z
+x/a

]
= 1

(
N+
E

)2 [z′+ + sin z′+

z′+
+

2 cos2 (z′+/2)

z+

]
=

2

a(
N+
E

)2 [
1 +

2 sin (z′+/2) cos (z′+/2)

z′+
+

2 cos2 (z′+/2)

z+

]
=

2

a
.

From Eq. (16) and the fact that(
z′±
)2

+
(
z±
)2

= β2

it follows that

sin

(
z′+

2

)
=
z+

β
; cos

(
z′+

2

)
=
z′+

β
, (17)

such that (
N+
E

)2 [
1 + 2

z+

β2
+

2z′+2

z+β2

]
=

2

a
;

N+
E =

√
2

a

√
z+

2 + z+
.

The normalization now depends on energy.
Similarly for the odd parity states

ψ−E(x) = N−E


B−eκ

−
Ex x < −a/2

A− sin
(
k′−E x

)
− a/2 < x < a/2

−B−e−κ−Ex x > a/2

, (18)

sin

(
z′−

2

)
= B− exp

(
−z
−

2

)
(19a)

z′− cos

(
z′−

2

)
= −B−z− exp

(
−z
−

2

)
(19b)

tan

(
z′−

2

)
= −z

′−

z−
(20)
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2
(
N−E

)2 [∫ a/2

0

dx sin2
(
z′−x/a

)
+
(
B−
)2 ∫ ∞

a/2

dxe−2z
−x/a

]
= 1

2
(
N−E

)2 [∫ a/2

0

dx sin2
(
z′−x/a

)
+ sin2

(
z′−/2

)
ez
−
∫ ∞
a/2

dxe−2z
−x/a

]
= 1

(
N−E

)2 [z′− − sin z′−

z′−
+

2 sin2 (z′−/2)

z−

]
=

2

a(
N−E

)2 [
1− 2 sin (z′−/2) cos (z′−/2)

z′−
+

2 sin2 (z′−/2)

z−

]
=

2

a(
N−E

)2 [
1 +

2z−

β2
+

2z′−2

z−

]
=

2

a

or

N−E =

√
2

a

√
z−

2 + z−
.

Chap. 6. ∆x and ∆p for a shallow well
I claimed that ∆x� a for a shallow well. In that case there is a single, even

parity eigenfunction with z+ = β2/2 � 1 and z′+ ≈ β. Using the normalized
wave function, I calculate〈

x2
〉

= 2
2

a

z+

2 + z+

×
[∫ a/2

0

dxx2 cos2
(
z′+x/a

)
+
z′+2

β2
ez

+

∫ ∞
a/2

dxx2e−2z
+x/a

]

≈ 2
z+

a

a3

4z+3
=

a2

2z+2
=

2a2

β4

and 〈
p2
〉

= −h̄2 4

a3
z+z′+2

2 + z+

×
[
−
∫ a/2

0

dx cos2
(
z′+x/a

)
+
z+2

β2
ez

+

∫ ∞
a/2

dx e−2z
+x/a

]

≈ 2h̄2z+β2

a3

(
a

2
− z+a

2β2

)
≈ h̄2β2

a

(
β2

2a
− β2

4a

)
=
h̄2β4

4a2
,

so

∆x2∆p2 ≈ h̄2

2
>
h̄2

4
and

∆p2

2m
≈ 1

4
β2V0 � V0.

The fluctuations in kinetic energy are not suffi cient to free the particle from the
well. Actually the result corresponds to

∆p2

2m
≈ 1

4
β2V0 = −E,
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so the fluctuations in the kinetic energy are of order |E|.
Note that I can also calculate the average value of the energy, which should

be E:

〈E〉 =

〈
p2
〉

2m
+ 〈V 〉

and

〈V 〉 = −2
2

a

z+

2 + z+

∫ a/2

0

dxV0 cos2
(
z′+x/a

)
≈ −V0z+ = −V0β2/2 = 2E

so 〈
p2
〉

2m
+ 〈V 〉 = −E + 2E = E.
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