Introductory Quantum Mechanics: A Traditional Approach Emphasizing Connections with Classical Physics

Supplementary Material

Supplementary material will be added from time to time.

Sec. 5.3 - Collapse of the Wave Function

My view that the collapse of the wave function is not a very meaningful concept is consistent with the statistical interpretation or ensemble interpretation of quantum mechanics expressed in the articles of L. B. Ballentine [The statistical interpretaion of quantum mechanics, Reviews of Modern Physics 42, 358-381 (1970)] and R. G. Newton [Probability interpretation of quantum mechanics, American Journal of Physics 48, 1029-1034 (1980)]. In some sense, these articles express the sentiment that quantum mechanics provides a probability interpretation of measurement only when carried out on an enesemble of identically prepared systems.

Single-Photon States

In discussing experiments on Bell's theorem, I introduced the concept of a single photon state, such as that emitted in spontaneous emission from a single excited atom. This quantum state is fundamentally different from that associated with the output of a laser that has been sent through a series of neutral density filters to reduce its intensity to some arbitrarily small value. That field is still a coherent state of the field whose average energy (for a pulse) can be much less than the energy $\hbar \omega_{0}$, where ω_{0} is the carrier frequency of the pulse. Authors often say that the field is so weak that it serves as a single photon source, but this is not true. A single photon source can entangle two atoms, but a low intensity coherent state field cannot. The two types of fields have very different second-order correaltion functions.

As an interesting example, consider a weak field pulse and a single-photon field incident on a thin film of glass. In both cases, there is a transmitted and reflected pulse, but only in the single-photon state are you guaranteed that the transmitted and reflected pulses are perfectly anti-correlated in the sense that it is impossible in a single experiment to measure photo-signals on detectors placed on both sides of the glass film.

Derivation of Equation (21.129)

To derive Eq. (21.129), I used a stated that Eq. (21.62) could be regarded as a vector equation of the form

$$
\hat{\mathbf{A}}=\frac{\left\langle\alpha^{\prime}, J, m_{J}\right| \hat{\mathbf{J}} \cdot \hat{\mathbf{A}}\left|\alpha, J, m_{J}\right\rangle}{\hbar^{2} J(J+1)} \hat{\mathbf{J}},
$$

provided diagonal matrix elements of both sides are taken. I then took the scalar product of this equation with $\hat{\mathbf{I}}$ and $\hat{\mathbf{A}}=\hat{\mathbf{L}}$ or $\hat{\mathbf{S}}$ and evaluated matrix elements of the scalar products. This produces the correct result.

A more rigorous proof is a direct one.

$$
\begin{equation*}
A_{n \ell j f}=\langle n, \ell, j, f, 0| \frac{(\hat{\mathbf{L}}-\hat{\mathbf{S}}) \cdot \hat{\mathbf{I}}}{r^{3}}|n, \ell, j, f, 0\rangle \tag{1}
\end{equation*}
$$

In Eq. (1), I replace $(\mathbf{L}-\mathbf{S}) \cdot \mathbf{I}$ by

$$
\begin{equation*}
(\mathbf{L}-\mathbf{S}) \cdot \mathbf{I}=\sum_{q=-1}^{1}(-1)^{q}\left(L_{1}^{q}-S_{1}^{q}\right) I_{1}^{-q} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
G_{1}^{1} & =-\frac{G_{+}}{\sqrt{2}}=-\frac{G_{x}+i G_{y}}{\sqrt{2}} \tag{3a}\\
G_{1}^{-1} & =\frac{G_{-}}{\sqrt{2}}=\frac{G_{x}-i G_{y}}{\sqrt{2}} \tag{3b}\\
G_{1}^{0} & =G_{z} \tag{3c}
\end{align*}
$$

($G=L, S, I$) are components of an irreducible tensor operator of rank 1. Using the properties of any angular momentum operator G

$$
\begin{align*}
G_{ \pm}\left|g, m_{g}\right\rangle & =\hbar \sqrt{\left(g \mp m_{g}\right)\left(g \pm m_{g}+1\right)}\left|g, m_{g} \pm 1\right\rangle \tag{4a}\\
G_{z}\left|g, m_{g}\right\rangle & =m_{g} \hbar\left|g, m_{g}\right\rangle \tag{4b}
\end{align*}
$$

I can evaluate Eq. (1) as

$$
\begin{align*}
A_{n \ell j f}= & \left\langle r^{-3}\right\rangle \sum_{m_{I}, m_{s}=-1 / 2}^{1 / 2} \sum_{q,=-1}^{1}(-1)^{q}\left[\begin{array}{cc}
\ell & 1 / 2 \\
-m_{I}-m_{s} & m_{s} \\
-m_{I}
\end{array}\right]\left[\begin{array}{ccc}
j & 1 / 2 & f \\
-m_{I} & m_{I} & 0
\end{array}\right] \\
& \times\left[\begin{array}{ccc}
\ell & 1 / 2 & j \\
-m_{I}^{\prime}-m_{s}^{\prime} & m_{s}^{\prime} & -m_{I}^{\prime}
\end{array}\right]\left[\begin{array}{ccc}
j & 1 / 2 & f \\
-m_{I}^{\prime} & m_{I}^{\prime} & 0
\end{array}\right] \\
& \times\left(L_{q,-m_{I}^{\prime}-m_{s}^{\prime},-m_{I}-m_{s}}-S_{q m_{s}^{\prime} m_{s}}\right) I_{q m_{I}^{\prime} m_{I}} \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& L_{q m_{\ell}^{\prime} m_{\ell}}=\left\langle L m_{\ell}^{\prime}\right| \hat{L}_{1}^{q}\left|L m_{\ell}\right\rangle=\hbar\left[\begin{array}{c}
m_{\ell} \delta_{q, 0} \delta_{m_{s}, m_{s}^{\prime}} \\
\left.+\frac{1}{\sqrt{2}}\binom{-\delta_{q, 1} \sqrt{\left(g-m_{g}\right)\left(g+m_{g}+1\right)} \delta_{m_{\ell}^{\prime}, m_{\ell}+1}}{+\delta_{q,-1} \sqrt{\left(g+m_{g}\right)\left(g-m_{g}+1\right)} \delta_{m_{\ell}^{\prime}, m_{\ell}-1}}\right]
\end{array}\right] \\
& S_{q m_{s}^{\prime} m_{s}}=\left\langle S m_{s}^{\prime}\right| \hat{S}_{1}^{q}\left|S m_{s}\right\rangle=\hbar\left[\begin{array}{c}
m_{s} \delta_{q, 0} \delta_{m_{s}, m_{s}^{\prime}} \\
+\frac{1}{\sqrt{2}}\left(-\delta_{q, 1} \delta_{m_{s},-1 / 2} \delta_{m_{s}^{\prime}, 1 / 2}+\delta_{q,-1} \delta_{m_{s}, 1 / 2} \delta_{m_{s}^{\prime},-1 / 2}\right)
\end{array}\right], \\
& I_{q m_{s}^{\prime} m_{s}}=\left\langle\begin{array}{l}
m_{I} \delta_{q^{\prime}, 0} \delta_{m_{I}, m_{I}^{\prime}}
\end{array}\right. \tag{6c}\\
&
\end{align*}
$$

and $\delta_{n, n^{\prime}}$ is a Kronecker delta. The sum can be carried out using a computer program to arrive at

$$
\begin{equation*}
A_{n \ell j f}=\hbar^{2}\left[\frac{\ell(\ell+1)-3 / 4}{j(j+1)}\right]\left[\frac{f(f+1)-j(j+1)-3 / 4}{2}\right]\left\langle r^{-3}\right\rangle . \tag{7}
\end{equation*}
$$

Chap. 6. Normalization of potential well eigenfunctions.

It is actually pretty easy to normalize the bound state eigenfunctions of the finite potential well. First I do it for the even eigenfunctions, which can be written as

$$
\psi_{E}^{+}(x)=N_{E}^{+}\left\{\begin{array}{cc}
B^{+} e^{\kappa_{E}^{+} x} & x<-a / 2 \tag{8}\\
\cos \left(k_{E}^{\prime} x\right) & -a / 2<x<a / 2 \\
B^{+} e^{-\kappa_{E}^{+} x} & x>a / 2
\end{array}\right.
$$

where

$$
\begin{align*}
& k_{E}^{\prime \pm}=\frac{\sqrt{2 m E^{\prime \pm}}}{\hbar}>0, \tag{9}\\
& \kappa_{E}^{ \pm}=\frac{\sqrt{-2 m E^{ \pm}}}{\hbar}>0, \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
E^{\prime}=E+V_{0} . \tag{11}
\end{equation*}
$$

Remember that the boundary conditions lead to

$$
\begin{align*}
\cos \left(\frac{z^{\prime+}}{2}\right) & =B^{+} \exp \left(-\frac{z^{+}}{2}\right) \tag{12a}\\
k_{E}^{\prime+} \sin \left(\frac{z^{\prime+}}{2}\right) & =B^{+} \kappa_{E}^{+} \exp \left(-\frac{z^{+}}{2}\right) \tag{12b}
\end{align*}
$$

where

$$
\begin{align*}
z^{ \pm} & =\sqrt{-\frac{2 m E^{\prime \pm}}{\hbar^{2}}} a \tag{13}\\
z^{\prime \pm} & =k_{E}^{\prime \pm} a=\sqrt{\beta^{2}-\left(z^{ \pm}\right)^{2}} \tag{14}\\
\beta^{2} & =\frac{2 m V_{0}}{\hbar^{2}} a^{2}, \tag{15}
\end{align*}
$$

and that the energy is determined from

$$
\begin{equation*}
\tan \left(\frac{z^{\prime+}}{2}\right)=\frac{z^{+}}{z^{\prime+}} . \tag{16}
\end{equation*}
$$

Using the wave function, it follows that the normalization is obtained from

$$
\begin{gathered}
2\left(N_{E}^{+}\right)^{2}\left[\int_{0}^{a / 2} d x \cos ^{2}\left(z^{\prime+} x / a\right)+\left(B^{+}\right)^{2} \int_{a / 2}^{\infty} d x e^{-2 z^{+} x / a}\right]=1 \\
2\left(N_{E}^{+}\right)^{2}\left[\int_{0}^{a / 2} d x \cos ^{2}\left(z^{\prime+} x / a\right)+\cos ^{2}\left(z^{\prime+} / 2\right) e^{z^{+}} \int_{a / 2}^{\infty} d x e^{-2 z^{+} x / a}\right]=1 \\
\left(N_{E}^{+}\right)^{2}\left[\frac{z^{\prime+}+\sin z^{\prime+}}{z^{\prime+}}+\frac{2 \cos ^{2}\left(z^{\prime+} / 2\right)}{z^{+}}\right]=\frac{2}{a} \\
\left(N_{E}^{+}\right)^{2}\left[1+\frac{2 \sin \left(z^{\prime+} / 2\right) \cos \left(z^{\prime+} / 2\right)}{z^{\prime+}}+\frac{2 \cos ^{2}\left(z^{\prime+} / 2\right)}{z^{+}}\right]=\frac{2}{a} .
\end{gathered}
$$

From Eq. (16) and the fact that

$$
\left(z^{\prime \pm}\right)^{2}+\left(z^{ \pm}\right)^{2}=\beta^{2}
$$

it follows that

$$
\begin{equation*}
\sin \left(\frac{z^{\prime+}}{2}\right)=\frac{z^{+}}{\beta} ; \quad \cos \left(\frac{z^{\prime+}}{2}\right)=\frac{z^{\prime+}}{\beta} \tag{17}
\end{equation*}
$$

such that

$$
\begin{gathered}
\left(N_{E}^{+}\right)^{2}\left[1+2 \frac{z^{+}}{\beta^{2}}+\frac{2 z^{\prime+2}}{z^{+} \beta^{2}}\right]=\frac{2}{a} \\
N_{E}^{+}=\sqrt{\frac{2}{a}} \sqrt{\frac{z^{+}}{2+z^{+}}}
\end{gathered}
$$

The normalization now depends on energy.
Similarly for the odd parity states

$$
\begin{gather*}
\psi_{E}^{-}(x)=N_{E}^{-}\left\{\begin{array}{cc}
B^{-} e^{\kappa_{E}^{-} x} & x<-a / 2 \\
A^{-} \sin \left(k_{E}^{\prime-} x\right) & -a / 2<x<a / 2 \\
-B^{-} e^{-\kappa_{E}^{-} x} & x>a / 2
\end{array}\right. \tag{18}\\
\sin \left(\frac{z^{\prime-}}{2}\right)=B^{-} \exp \left(-\frac{z^{-}}{2}\right) \tag{19a}\\
z^{\prime-} \cos \left(\frac{z^{\prime-}}{2}\right)=-B^{-} z^{-} \exp \left(-\frac{z^{-}}{2}\right) \tag{19b}\\
\tan \left(\frac{z^{\prime-}}{2}\right)=-\frac{z^{\prime-}}{z^{-}} \tag{20}
\end{gather*}
$$

$$
\begin{gathered}
2\left(N_{E}^{-}\right)^{2}\left[\int_{0}^{a / 2} d x \sin ^{2}\left(z^{\prime-} x / a\right)+\left(B^{-}\right)^{2} \int_{a / 2}^{\infty} d x e^{-2 z^{-} x / a}\right]=1 \\
2\left(N_{E}^{-}\right)^{2}\left[\int_{0}^{a / 2} d x \sin ^{2}\left(z^{\prime-} x / a\right)+\sin ^{2}\left(z^{\prime-} / 2\right) e^{z^{-}} \int_{a / 2}^{\infty} d x e^{-2 z^{-} x / a}\right]=1 \\
\left(N_{E}^{-}\right)^{2}\left[\frac{z^{\prime-}-\sin z^{\prime-}}{z^{\prime-}}+\frac{2 \sin ^{2}\left(z^{\prime-} / 2\right)}{z^{-}}\right]=\frac{2}{a} \\
\left(N_{E}^{-}\right)^{2}\left[1-\frac{2 \sin \left(z^{\prime-} / 2\right) \cos \left(z^{\prime-} / 2\right)}{z^{\prime-}}+\frac{2 \sin ^{2}\left(z^{\prime-} / 2\right)}{z^{-}}\right]=\frac{2}{a} \\
\left(N_{E}^{-}\right)^{2}\left[1+\frac{2 z^{-}}{\beta^{2}}+\frac{2 z^{\prime-2}}{z^{-}}\right]=\frac{2}{a}
\end{gathered}
$$

or

$$
N_{E}^{-}=\sqrt{\frac{2}{a}} \sqrt{\frac{z^{-}}{2+z^{-}}}
$$

Chap. 6. Δx and Δp for a shallow well
I claimed that $\Delta x \gg a$ for a shallow well. In that case there is a single, even parity eigenfunction with $z^{+}=\beta^{2} / 2 \ll 1$ and $z^{\prime+} \approx \beta$. Using the normalized wave function, I calculate

$$
\begin{aligned}
\left\langle x^{2}\right\rangle= & 2 \frac{2}{a} \frac{z^{+}}{2+z^{+}} \\
& \times\left[\int_{0}^{a / 2} d x x^{2} \cos ^{2}\left(z^{\prime+} x / a\right)+\frac{z^{\prime+2}}{\beta^{2}} e^{z^{+}} \int_{a / 2}^{\infty} d x x^{2} e^{-2 z^{+} x / a}\right] \\
\approx & 2 \frac{z^{+}}{a} \frac{a^{3}}{4 z^{+3}}=\frac{a^{2}}{2 z^{+2}}=\frac{2 a^{2}}{\beta^{4}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle p^{2}\right\rangle= & -\hbar^{2} \frac{4}{a^{3}} \frac{z^{+} z^{\prime+2}}{2+z^{+}} \\
& \times\left[-\int_{0}^{a / 2} d x \cos ^{2}\left(z^{\prime+} x / a\right)+\frac{z^{+2}}{\beta^{2}} e^{z^{+}} \int_{a / 2}^{\infty} d x e^{-2 z^{+} x / a}\right] \\
\approx & \frac{2 \hbar^{2} z^{+} \beta^{2}}{a^{3}}\left(\frac{a}{2}-\frac{z^{+} a}{2 \beta^{2}}\right) \approx \frac{\hbar^{2} \beta^{2}}{a}\left(\frac{\beta^{2}}{2 a}-\frac{\beta^{2}}{4 a}\right)=\frac{\hbar^{2} \beta^{4}}{4 a^{2}}
\end{aligned}
$$

so

$$
\Delta x^{2} \Delta p^{2} \approx \frac{\hbar^{2}}{2}>\frac{\hbar^{2}}{4}
$$

and

$$
\frac{\Delta p^{2}}{2 m} \approx \frac{1}{4} \beta^{2} V_{0} \ll V_{0}
$$

The fluctuations in kinetic energy are not sufficient to free the particle from the well. Actually the result corresponds to

$$
\frac{\Delta p^{2}}{2 m} \approx \frac{1}{4} \beta^{2} V_{0}=-E
$$

so the fluctuations in the kinetic energy are of order $|E|$.
Note that I can also calculate the average value of the energy, which should be E :

$$
\langle E\rangle=\frac{\left\langle p^{2}\right\rangle}{2 m}+\langle V\rangle
$$

and

$$
\begin{aligned}
\langle V\rangle & =-2 \frac{2}{a} \frac{z^{+}}{2+z^{+}} \int_{0}^{a / 2} d x V_{0} \cos ^{2}\left(z^{\prime+} x / a\right) \\
& \approx-V_{0} z^{+}=-V_{0} \beta^{2} / 2=2 E
\end{aligned}
$$

So

$$
\frac{\left\langle p^{2}\right\rangle}{2 m}+\langle V\rangle=-E+2 E=E
$$

