Quantum Mechanics I
Fall, 2003

Problem Set 7

Due Friday, October 24

Midterm Exam: Monday October 20, 5:30-7:00 in Room 340 West Hall All material in Chaps. 1-6 in Merzbacher

1. Problem 36-37.
2. Problem 40. There is a misprint in this problem. You are asked to prove that $\frac{\hbar}{i} \frac{\partial}{\partial r}$ is not Hermitian but that $\frac{1}{2}\left[\left(\frac{\mathbf{r}}{r}\right) \cdot \mathbf{p}+\mathbf{p} \cdot\left(\frac{\mathbf{r}}{r}\right)\right]$ is Hermitian.
3. Consider the potential in 2-D with $V(\rho)=0$ for $\rho<a$ and $V(\rho)=\infty$ for $\rho>a$. An electron moves in this potential. Find the three lowest eigenenergies (in eV) and eigenfunctions for $a=10^{-8} \mathrm{~cm}$.

4-5. (Optional, but that doesn't mean you shouldn't try it). Consider a free particle moving inside a conical "box" with $V=0$ for $\theta<\beta$ and $r<a$, and $V=\infty$ elsewhere. As discussed in class, the angular part of the wave function for can be written as an associated Legendre function $P_{v}^{m}(x=\cos \theta) e^{i m \phi}$, where m is an integer, but v is no longer restricted to be an integer if $x=-1$ is not included in the space. Find the three lowest energy eigenvalues $k a$ for this system when $\beta=\pi / 4\left(k^{2}=2 m E / \hbar^{2}\right)$. [Hint: Mathematica evaluates the LegendreP[$\mathrm{n}, \mathrm{m}, \mathrm{x}$] and BesselJ $[\mathrm{n}+1 / 2, k a]$ functions for arbitrary arguments. You must first find the lowest values of v consistent with the boundary conditions on θ. Then show that solutions of the radial equation vary as $J_{v+1 / 2}(k r)$ and find values of $k a$ that satisfy the boundary condition at $r=a$. I found the lowest energy states correspond to the lowest root of $P_{v}^{0}(\cos \beta)=0$, the second lowest energy to the lowest root of $P_{\nu}^{1}(\cos \beta)=0$, the third lowest energy to the lowest root of $P_{v}^{0}(\cos \beta)=0$, the fourth lowest energy to the lowest root of $P_{v}^{2}(\cos \beta)=0$, and the fifth lowest energy to the second lowest root of $P_{v}^{0}(\cos \beta)=0$. Recall for each v, there are an infinite number of solutions of $J_{v+1 / 2}(k a)=0$. Why?] Is there any energy degeneracy in this problem?

