Fall, 2000

Problem Set 6

Due Friday, October 17

Solutions to this problem set will be handed out on Friday, October 17.
Midterm Exam: Monday October 20, 5:30-7:00 in Room 340 West Hall All material in Chaps. 1-6 in Merzbacher

1. Problem 28 (b). Plot the probability density as a function of time for $\omega t=0, \pi / 2, \pi, 2 \pi$. Go to the web site webphysics.davidson.edu/applets/applets.html and then to the topic QM Time. Put in a harmonic oscillator potential and your original wave function to see its time evolution.
2. Problem 29. Hint: What is the expectation value of any time-independent operator in an eigenstate of a Hamiltonian?

3-4. In a harmonic oscillator potential, the initial wave function is

$$
\psi(x, 0)=N e^{i p_{0} x / \hbar} e^{-\alpha^{2}\left(x-x_{0}\right)^{2} / 2}
$$

with $\alpha^{2}=m \omega / \hbar$ and N is a normalization constant. This is a minimum uncertainty packet - the ground state wave packet displaced by x_{0}. Calculate $\psi(x, t)$ and show that the center of the packet follows the classical trajectory and that the packet does not spread in time. This is called a coherent state wave packet. Hint: Proceed as in any time-dependent problem. Find the expansion coefficients using $\psi(x, 0)$ and then obtain $\psi(x, t)=\sum_{n} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}$. The integrals and sums that appear can be evaluated using tables of integrals, the generating function, Eq. (5.37) in Merzbacher, or the recursion relations. The final result is

$$
\psi(x, t)=N \exp \left\{\begin{array}{c}
-\frac{\alpha^{2}}{2}[x-Q \cos (\omega t+\delta)]^{2}-i x Q \alpha^{2} \sin (\omega t+\delta) \\
\left.+\frac{\alpha^{2} Q^{2}}{4} i[\sin 2(\omega t+\delta)-\sin 2 \delta]-i \frac{\omega t}{2}\right)
\end{array}\right\}
$$

where

$$
Q e^{-i \delta}=x_{0}+\frac{i p_{0}}{\hbar \alpha^{2}}
$$

At the web site, webphysics.davidson.edu/applets/applets.html (topic QM Time), put in an initial Gaussian packet for a SHO potential to see that the probability density does not spread in time.

