Phys 511
Quantum Mechanics I
Fall, 2003

Problem Set 11

Due Friday, November 21
1-2. For the hard sphere, $V(r)=0, r>a ; \infty, r<a$, calculate the phase shifts. Use a computer program to evaluate the phase shifts as a function of ℓ for $k a=0.1,10,100$. You need only go from $\ell=0$ to $\ell=k a+10$ in each case. By using the computer to carry out the sum, obtain the total cross section in each case (in units of a^{2}) and compare it with π. In the case of $k a=100$, use the computer to calculate and plot the differential scattering cross section for $\theta<0.25$ and in the range $\pi / 4<\theta<3 \pi / 4$ (both in units of a^{2}). Interpret your results.
3. For an attractive potential, $V(r)=-V_{0}, r<a ; 0, r>a$, we have shown that the phase shifts are given by

$$
\tan \delta_{\ell}=-\left[\frac{x^{\prime} j_{\ell}(x) j_{\ell}^{\prime}\left(x^{\prime}\right)-x j_{\ell}\left(x^{\prime}\right) j_{\ell}^{\prime}(x)}{x n_{\ell}^{\prime}(x) j_{\ell}\left(x^{\prime}\right)-x^{\prime} j_{\ell}^{\prime}\left(x^{\prime}\right) n_{\ell}(x)}\right]
$$

where $x^{2}=2 \mu E a^{2} / \hbar^{2}, x^{\prime 2}=2 \mu\left(E+V_{0}\right) a^{2} / \hbar^{2}$, and $\beta^{2}=2 \mu V_{0} a^{2} / \hbar^{2}$. Obtain the differential and total cross section in the limit that $x \ll 1$ (consider only $\ell=0$). Under what conditions does the cross section $\ell=0$ contribution to the cross section vanish?
4. For the same potential as problem 1, numerically evaluate the phase shifts for $k a=10$ and $\beta=10$. For these values plot the differential cross section (in units of a^{2}). Note the diffraction peak for $\theta \lesssim 0.2$ evidence for a glory effect near $\theta=\pi$. Super optional: Choose a large value of $x\left(100 ?, 1000\right.$?) and $n=\sqrt{\frac{E+V_{0}}{E}}=4 / 3$. Sum the partial waves to show explicitly the rainbow effect The classical rainbow angle occurs at a deflection angle $\Theta=4 r-2 i$ where $\cos i=\sqrt{\frac{n^{2}-1}{3}}$ and $n \sin r=\sin i$.
5. For the potential of problem 1 with $\beta=40$, consider scattering for a fixed partial wave, $\ell=20$. Show that as a function of x, there is a resonance at $x=18.3$ and a superfine resonance at $x=7.84445301224024$. Interpret this result, using the effective potential.

