Maple Reference Sheets

Paul Ullrich

August 30th, 2008

Contents

1 Fundamental Commands 2

2 The Assume Facility 3

3 Calculus 3

4 Graphics 4

5 Linear Algebra 4
1 Fundamental Commands

restart;
Resets all Maple variables and settings to their default values. Should be at the beginning of every program.

?<command>;
Brings up Maple help on the specified command.

with(<package>);
Include <package> in the list of packages to search for additional commands.
Example: with(LinearAlgebra);

<variable> := <value>;
Assignment of <value> to <variable>.
Example: HalfPi := Pi/2;

Digits := <precision>;
Sets the default precision for floating point operations to <precision>.
Default: Digits := 10;

<func> := <var> -> <expression>;
Constructs a single-variable function that maps <variable> to <expression>.
Example: sinc := x -> sin(x)/x;

<func>(<var>);
Evaluate a single-variable function.
Example: sinc(5);

<func>(<v1>,...,<vn>)
Evaluate a multi-variable function.
Example: F := (x,y) -> sin(x)*sin(y);

<func>(<v1>,...,<vn>)
Perform the given substitutions into the given expression.
Example: subs(x=arcsin(z), tan(x));

map(<function>, <expression>);
Apply the function <function> to each term or element of <expression>.
Example: map(x -> x^2, {1,2,3});

unapply(<expression>, <list of vars>);
Transform <expression> into a function with parameters given by <list of vars>.
Example: unapply(x^2 + y^2, [x, y]);

solve(<set of eqs>[, <set of vars>]);
Solve a set of equations for the given set of variables.
Example: solve(x=y, x+y=2, x, y);

fsolve(<set of eqs>);
Numerically solve the given set of equations for all variables.
Example: fsolve(x^3+Pi*x^2+Pi^2*x+1=0);
2 The Assume Facility

assume(<variable>, <property>);
Impose assumptions given by <property> on <variable>.
Example: assume(a, 'real');

assume(<expression>);
Impose assumptions given by <expression>.
Example: assume(c > 0);

additionally(<variable>, <property>);
Impose additional assumptions on <variable>,
without removing existing assumptions.
Example: additionally(c, 'integer');

additionally(<expression>);
Impose additional assumptions given by <expression>,
without removing existing assumptions.
Example: additionally(a < 5);

is(<variable>, <property>);
Determine if <variable> has the specified property
given by <property>.
Example: is(a, 'real');

is(<expression>);
Determine if <expression> is always true.
Example: is(a'^2 >= 0);

coulditbe(<variable>, <property>);
Determine if <variable> could have the specified
property given by <property>.
Example: coulditbe(a, 'integer');

coulditbe(<expression>);
Attempt to determine if <expression> could hold.
Example: coulditbe(a'^2 = 1.0);

about(<variable>);
Give information on <variable>, including assumptions made.
Example: about(a);

3 Calculus

diff(y, x);
Calculates dy/dx.
Example: diff(sin(x'^2), x);

diff(y, x_1, ..., x_n);
Calculates derivative of y with respect to all variables x_1, ..., x_n. Repetition of variables is allowed.
Example: diff(sin(y)*cos(x), x, y);

limit(y, x=a [, left|right]);
Evaluate the limit of the given expression y at the point x = a. Whether to use the left or right limit may also be specified.
Example: limit(x/abs(x), x=0, right);

int(y, x);
Calculates the indefinite integral of y with respect to x.
Example: int(sin(x)*tan(x), x);

Int(y, x=a..b);
Equivalent to 'int', except does not evaluate the resulting integral (known as the inert form).

evalf(Int(y, x=a..b));
Numerical integration of y with respect to x over the given interval. Note the usage of the inert integration command Int.
Example: evalf(Int(exp(-x'^2), x=0..1));

sum(<expression>, n=a..b);
Evaluate the given summation.
Example: sum(k'^2, k=1..n);

Sum(<expression>, n=a..b);
Equivalent to 'sum', except does not evaluate the result (known as the inert form).

product(<expression>, n=a..b);
Evaluate the given product.
Example: product(k+c, k=1..n);

Product(<expression>, n=a..b);
Equivalent to 'product', except does not evaluate the result (known as the inert form).

series(y, x=a [, , <order>]);
Calculate the Taylor series expansion of y about the point x = a up to <order> terms.
Example: series(ln(x), x=1, 4);
4 Graphics

\[\text{plot}(<\text{expr}>, <\text{var}>=a..b); \]
Plot the expression \(<\text{expr}>\) containing variable \(<\text{var}>\) over the range \(a..b\).

Example: \(\text{plot}(\text{BesselJ}(1,x), x=-10..10);\)

\[\text{plot3d}(<\text{expr}>, <\text{var}1>=a..b, <\text{var}2>=c..d); \]
Plot, in 3D, the expression \(<\text{expr}>\) containing variables \(<\text{var}1>\) and \(<\text{var}2>\) over the range \(a..b\) and \(c..d\).

Example: \(\text{plot3d}(x^2+\sqrt{y}, x=-1..1, y=0..2);\)

5 Linear Algebra

\[\text{with}(\text{LinearAlgebra}); \]
Include standard linear algebra functionality.

?LinearAlgebra
Help on the full set of linear algebra functionality.

\[\text{Vector}(<\text{list of values}>); \]
Construct a Vector object from a list of values.

Example: \(V := \text{Vector}([1,2,3]);\)

\[\text{Matrix}(<\text{list of lists of values}>); \]
Construct a Matrix object from a list of lists of values.

Example: \(M := \text{Matrix}([[1,1],[0,1]]);\)

Matrix or vector multiplication.

Example: \(N := M \cdot M;\)

\[\text{Determinant}(<\text{Matrix}>); \]
Calculate the determinant of the given matrix.

Example: \(\text{Determinant}(M);\)

\[\text{Eigenvalues}(<\text{Matrix}>); \]
Calculate the eigenvalues of the given matrix.

Example: \(\text{Eigenvalues}(M);\)

\[\text{Eigenvectors}(<\text{Matrix}>); \]
Calculate the eigenvectors and associated eigenvalues of the given matrix.

Example: \(\text{Eigenvectors}(M);\)

\[\text{Transpose}(<\text{Matrix}>); \]
Perform the matrix transpose operation.

Example: \(\text{Transpose}(M);\)